Andreas Seel

Abschluss:
M. Sc.
Funktion:
Projektingenieur
Schwerpunkte:
Bildverarbeitung, FTS / FFZ
Telefon:
+49 (0)511 279 76-234
E-Mail:
seel@iph-hannover.de
vCard:
vCard

Veröffentlichungen

Unbemannte Luftfahrtsysteme haben die Industrie stark verändert. Die rasant voranschreitende technologische Entwicklung von sogenannten Unmanned Aircraft Systems (UAS) macht es notwendig, sich frühzeitig mit der Ausgestaltung künftiger  Einsatzszenarien zu befassen.

UAS, Drohnen, Navigation

Unbemannte Luftfahrzeugsysteme (engl. Unmanned Aircraft Systems - UAS) decken nicht nur draußen, sondern auch Indoor unterschiedlichste Anwendungsmöglichkeiten ab. In einigen dieser Anwendungsfelder wie bspw. bei der Fabriklayoutdigitalisierung oder dem innerbetrieblichen Materialtransport konnte die Verwendung von UAS bereits erfolgreich getestet und validiert werden. Der aktuelle technische Entwicklungsstand von UAS für Flugregelung, Kollisionsvermeidung und Flugleistung lässt grundsätzlich den Einsatz im Produktionsbetrieb zu. Ungeklärt ist weiterhin, welche rechtlichen und somit auch versicherungstechnischen, technischen und betrieblichen Voraussetzungen von anwendenden Unternehmen für die Verwendung im Produktionsbetrieb geschaffen werden müssen. In diesem Whitepaper werden diese Fragen diskutiert. Anschließend wird eine technische und betriebliche Risikoanalyse vorgestellt, die um einen Maßnahmenkatalog für eine fachgemäße Einführung und Anwendung der UAS-Technologie ergänzt wird. Dabei werden mögliche Risiken betrachtet, auch wenn mit zunehmendem Automatisierungsgrad von UAS die Risiken durch Sicherheitsmechanismen und entsprechende Sensorik verringert werden können.

Drohnen, Intralogistik, Automatisierter Transport

Fahrerlose Transportsysteme sind ein entscheidender Baustein für leistungsfähigere Produktionssysteme in der Intralogistik, haben aber Schwächen in der Mensch-Maschine-Interaktion. Von Wissenschaftlern des IPH wird eine gestenbasierte Steuerung entwickelt, die die Interaktion intuitiv gestalten und ihre Akzeptanz erhöhen soll.

Fahrerlose Transportfahrzeuge, Leitsteuerung, Gestenbasierte Steuerung

Dieser Beitrag zeigt, wie die von Menschen bekannten Fähigkeiten zur Flexibilität und Anpassung gegenüber veränderten Umgebungsbedingungen, die sich in den kognitiven Eigenschaften der Menschen widerspiegeln, auf Flurförderzeuge in der Intralogistik übertragen werden kann. Als Beispiele für die Umsetzung von Industrie 4.0 in der Intralogistik werden Technologien vorgestellt, die es Flurförderzeugen ermöglichen, ihre Umgebung zu erkennen, Informationen zu kommunizieren, zu schlussfolgern, autonom zu handeln, Entscheidungen zu treffen, zu lernen oder zu planen. Realisiert werden diese Fähigkeiten durch ein optisches Ortungssystem zur Positionsbestimmung, eine kamerabasierte Ein-/Auslagerungsunterstützung und in Reifen integrierte Sensorik sowie neuartige Interaktionsformen für Flurförderzeuge in Form von Sprache und Gestik.

Fahrerloses Transportsystem, Fahrerloses Transportfahrzeug, Datenbrille

Fahrerlose Transportsysteme sind ein Baustein für leistungsfähigere Produktionssysteme in der Intralogistik, haben aber Schwächen in der Mensch-Maschine-Interaktion. In einem komplexen Forschungsvorhaben wird u. a. eine sprachbasierte Beauftragung entwickelt, die die Mensch-Maschine-Interaktion intuitiver gestalten und ihre Akzeptanz erhöhen soll.

Fahrerloses Transportsystem, Fahrerloses Transportfahrzeug, Datenbrille, Sprachsteuerung

Fahrerlose Transportsysteme (FTS) sind ein etabliertes und wirksames Instrument, um die Wirtschaftlichkeit von modernen Produktionsanlagen zu steigern und intralogistische Prozesse effizienter zu gestalten. Neben einer Leitsteuerung und einem Kommunikationssystem gehören auch Fahrerlose Transportfahrzeuge (FTF) zu den Hauptkomponenten eines FTS. In Relation zu manuell gesteuerten Flurförderfahrzeugen zeichnen sich automatisierte FTF durch eine höhere Effizienz aus. Der Nachteil von FTF besteht darin, dass sie nicht in der Lage sind kritische Betriebssituationen selbstständig zu lösen. In diesem Fall ist ein aufwendiges Eingreifen durch Fachpersonal erforderlich.

Mit dem Ziel diese Hemmnisse zu überwinden ist das Projekt „Mobile Mensch-Maschine-Interaktion zur Beauftragung und Steuerung von FTF (MobiMMI)“ entstanden. In diesem Projekt soll die Mensch-Maschine-Interaktion zwischen einem Bediener und einem FTF durch den Einsatz eines sprach- und gestenbasierten Systems erweitern werden, um die Intervention durch den Bediener einfacher und intuitiver zu gestalten und somit die Anschaffungs- und Betriebskosten von FTF signifikant zu senken.

Vor dem Hintergrund der Sicherheit, Ergonomie, Benutzerfreundlichkeit und Integrierbarkeit wird mit diesem Zweck ein mobiles System entwickelt und mit verschiedenen Sensoren zur 3D-Erfassung der Umgebung, zur Indoor-Positionsbestimmung und zur multimodalen Kommunikation ausgestattet. Die aufgezeichneten Daten werden mittels Computer Vision und Machine Learning ausgewertet, sodass der Bediener befähigt wird schnell und unkompliziert auf kritische Betriebssituationen zu reagieren.

Fahrerloses Transportsystem, Fahrerloses Transportfahrzeug, Mensch-Maschine-Interaktion

Forschungsprojekte