Sensor- and app-based validation of process and product quality for effort-reduced certification of personalized medical devices

Theme Additive Manufacturing, Artificial Intelligence
Project title Sensor- and app-based validation of process and product quality for effort-reduced certification of personalized medical devices (SAViour)
Project duration 01.02.2021 – 31.01.2023
Press release

Personalized medical devices are subject to strict safety requirements. Thus, the influence of a large number of parameters in the additive manufacturing of individualized medical components must be validated. The resulting complex approval procedures present SMEs with major methodological and economic challenges.

The research project SAViour is concerned with the development of a quality management system for real-time monitoring of process parameters in additive manufacturing. Product quality is monitored using a quality model based on the machine learning process. The data required for this is collected using a sensor concept developed in-house, which is integrated directly into the 3D printing process. The data obtained can additionally be used for holistic process optimization. The process is implemented and researched using Fused Deposition Modeling (FDM).

The goal is to create an app that enables process correction and documents the quality of the manufactured components and the process.

  • Sorry, no events available.
  • 13.04.2021, 10:35 h - 16:00 h
  • Online Veranstaltung

Publications about the project

Additive manufacturing enables the economical production of complex components with a high degree of customization. Therefore, the medical industry is using the advantages of additive manufacturing to produce individualized medical devices. Medical devices are subject to special quality control requirements that additive manufacturing processes do not meet yet. This article deals with the introduction of an in situ process monitoring concept using the example of fused deposition modeling. The process monitoring is carried out by a quality model, which accesses the data of a self-developed sensor concept integrated in the printer. This data is analyzed using a machine learning pipeline to predict process and product quality. Thereby, the machine learning pipeline consist of several sequential steps, ranging from data extraction and preprocessing to model training and deployment. The procedure presented for ensuring print quality forms a basis for the production of safety-relevant components in batch size one and extends conventional quality assurance methods in additive manufacturing.

additive manufacturing, quality monitoring, fused deposition modeling, artificial intelligence

Additive manufacturing has established itself in medical technology, where complex and patient-specific products are manufactured. Since additive manufacturing processes are sensitive to changes in process parameters and environmental conditions, quality assurance is a key factor for production. This paper presents the approach for in-situ process monitoring in additive material extrusion.

Additive Manufacturing, 3D printing, Fused Deposition Modeling, quality control, machine learning


The IGF project 21610 N of the Research Association Quality (FQS) was funded via the German Federation of Industrial Research Associations (AiF) in the programme of Industrial Collective Research (IGF) by the Federal Ministry for Economic Affairs and Climate Action (BMWK) based on a decision of the German Bundestag.


Your contact person