Anne Vogler

Graduation:
M.Sc.
Function:
Project engineer
Practice Areas:
Process analysis and monitoring of additive manufacturing processes
Phone:
+49 (0)511 279 76-228
E-Mail:
vogler@iph-hannover.de
vCard:
vCard

Publications

Additive manufacturing enables the economical production of complex components with a high degree of customization. Therefore, the medical industry is using the advantages of additive manufacturing to produce individualized medical devices. Medical devices are subject to special quality control requirements that additive manufacturing processes do not meet yet. This article deals with the introduction of an in situ process monitoring concept using the example of fused deposition modeling. The process monitoring is carried out by a quality model, which accesses the data of a self-developed sensor concept integrated in the printer. This data is analyzed using a machine learning pipeline to predict process and product quality. Thereby, the machine learning pipeline consist of several sequential steps, ranging from data extraction and preprocessing to model training and deployment. The procedure presented for ensuring print quality forms a basis for the production of safety-relevant components in batch size one and extends conventional quality assurance methods in additive manufacturing.

additive manufacturing, quality monitoring, fused deposition modeling, artificial intelligence

Additive manufacturing has established itself in medical technology, where complex and patient-specific products are manufactured. Since additive manufacturing processes are sensitive to changes in process parameters and environmental conditions, quality assurance is a key factor for production. This paper presents the approach for in-situ process monitoring in additive material extrusion.

Additive Manufacturing, 3D printing, Fused Deposition Modeling, quality control, machine learning

Research projects

Job offers