Christopher Roe

Graduation:
M.Sc.
Function:
Project engineer
Practice Areas:
Solid forming, cross wedge rolling
Phone:
+49 (0)511 279 76-342
E-Mail:
c.roe@iph-hannover.de
vCard:
vCard
Xing:
https://www.xing.com/profile/Christopher_Roe

Publications

In the non-circular rolling, the feasibility of rolling several mutually offset, locally non-round shaped elements into a cylindrical semi-finished product are investigated. One sub-area of the investigations is the rolling of two elliptical sections.

From three different calculation concepts for the determination of the tool engraving, one was chosen for a simulative parameter study. The main influencing variables, including the length and width of the engraving and a process window, were identified.

forming technology, manufacturing technology, FEM

During flat die rolling, two die plates pass each other and form the cylindrical semi-finished product enclosed within. Non-circular rolling examines the rolling of multiple, locally nonround geometries such as eccentrics. With the aid of statistical experimental design, a simulative parameter investigation has been carried out, main influencing variables have been recognised and process windows identified.

non-round, eccentric, flat jaw tools, preforms, intermediate forms, FEM

IPH has developed an algorithm for the automated design of rolling dies in the DFG project "Non-Circular Rolling". The researchers are using it to perform extensive parameter studies with a wide range of dies.

Non-circular rolling, cross wedge rolling, rolling dies, design, automation, algorithm

Flat die rolling is a solid forming operation, in which two engraved tool plates run past each other and thereby form a cylindrical semi-finished product. The non-circular rolling can be used as a preform optimising process, where it should be possible to form local non-circular sections, for example ellipses or eccentrics, into a cylindrical semi-finished product. The material flow should be exclusively in radial direction. Initial simulations show that the requirements can be met.

non-circular rolling, cross wedge rolling, flat dies, preforms and intermediate forms, FEM

A method is presented that enables the complexity of a forging to be determined automatically on the basis of the CAD file of the forging. An automated evaluation of the forging complexity is necessary for a digitized and automated design of stage sequences in order to be able to determine important design parameters such as the flash ratio or the number of stages.

CAD, forming technology, algorithms

In forging industry, the development of new bulk metal forming technologies still is determined by a separation between construction and simulation. The resulting iterations take a lot of time. In this paper, the data mining method neuronal network is used to predict the forming force of a finite element forging simulation of a flange.

simulation, AI, prognosis, forming force

Research projects