Jens Kruse

Project engineer
Practice Areas:
Cross wedge rolling, bulk forming
+49 (0)511 279 76-341


To manufacture semi-finished hybrid workpieces with tailored properties, a finite element simulation assisted process chain design was investigated. This includes the process steps of cross wedge rolling, hot geometry inspection, induction hardening, and fatigue testing. The process chain allows the utilisation of material combinations such as high-strength steels with low-cost and easy to process steels. Here, plasma transferred arc welding is applied to supply the process chain with hybrid specimen featuring different steel grades. An overview of the numerical approaches to consider the various physical phenomena in each of the process steps is presented. The properties of the component behaviour were investigated via the finite element method (FEM) and theoretical approaches.

Cross-Wedge Rolling, Forming, hybrid, tailored forming

In this work we present an application of the virtual element method (VEM) to a forming process of hybrid metallic structures by cross-wedge rolling. The modeling of that process is embedded in a thermomechanical framework undergoing large deformations. Since forming processes include mostly huge displacements within a plastic regime, the difficulty of an accurate numerical treatment arises. VEM illustrates a stable, robust and quadratic convergence rate under extreme loading conditions in many fields of numerical mechanics. Numerically, the forming process is achieved by assigning time-dependent boundary conditions instead of modeling the contact mechanics yielding to a simplified formulation. Based on the two metallic combinations of steel and aluminum, different material properties are considered in the simulations. The purpose of this contribution is to illustrate the effectiveness of such a non-contact macroscopic framework by employing suitable boundary conditions within a virtual element scheme. A comparison with the classical finite element method (FEM) is performed to demonstrate the efficiency of the chosen approach. The numerical examples proposed in this work stem out from the DFG Collaborative Research Centre (CRC) 1153 “Process chain for the production of hybrid high-performance components through tailored forming”.

simulation, FEM, bulk metal forming, tailiored forming

The aim of subproject B1 of the Collaborative Research Center (CRC) 1153 is to determine the formability of novel hybrid semi-finished products by means of incremental forming cross wedge rolling. Main aspect is the forming of hybrid semi-finished products made of steel, aluminium and hard material alloys. In order to reduce the component weight, the use of hybrid semi-finished products makes it possible to manufacture less stressed segments of a previously monolithic component from a light metal. To increase wear resistance, a component area (e.g. a bearing seat) can be coated with a hard material. In addition, process variables (e.g. temperature and force) are to be measured in contact between work piece and tool in the future. There are primarily two material arrangements for the semi-finished products used: coated (coaxial - demonstrator shaft 1) and joined at the front (serial - demonstrator shaft 3). One challenge is the heating of the semi-finished products necessary for forming, since the hybrid semi-finished product has different flow resistances due to the different materials and may have to be heated inhomogeneously in order to enable uniform forming.

cross-wedge rolling, forming, hybrid work pieces, tailored forming, hybrid semi-finished products

The Collaborative Research Centre 1153 (CRC 1153) “Process chain for the production of hybrid high-performance components through tailored forming“ at the Institute for Integrated Production in Hanover/Germany is opening up further potential for hybrid solid components. On the basis of a new type of production process, tailored semi-finished products already joined prior to forming are to be used.

tailored forming, cross-wedge rolling, forming, aluminium, steel

The Collaborative Research Centre 1153 (CRC 1153) “Process chain for the production of hybrid high-performance components through tailored forming” aims to develop new process chains for the production of hybrid bulk components using joined semi-finished workpieces. The subproject B1 investigates the formability of hybrid parts using cross-wedge rolling. This study investigates the reduction of the coating thickness of coaxially arranged semi-finished hybrid parts through cross-wedge rolling. The investigated parts are made of two steels (1.0460 and 1.4718) via laser cladding with hot-wire. The rolling process is designed by finite element (FE)-simulations and later experimentally investigated. Research priorities include investigations of the difference in the coating thickness of the laser cladded 1.4718 before and after cross-wedge rolling depending on the wedge angle, cross-section reduction, and the forming speed. Also, the simulations and the experimental trials are compared to verify the possibility of predicting the thickness via finite element analysis (FEA). The main finding was the ability to describe the forming behavior of coaxially arranged hybrid parts at a cross-section reduction of 20% using FEA. For a cross-section reduction of 70% the results showed a larger deviation between simulation and experimental trials. The deviations were between 0.8% and 26.2%.

cross-wedge rolling, hybrid forming, FEA, coating thickness

Within the Collaborative Research Centre (CRC) 1153 “Tailored Forming “the manufacturing of hybrid bulk components is investigated. Therefore, a process chain consisting of joining, forming, milling and quality control has been established by multiple subprojects.Within subproject B1 of the CRC forming of hybrid parts by the incrementally forming cross-wedge rolling (CWR) process is investigated. The superior aim is to determine process limits and capabilities, when forming parts consisting of different materials joined by varying technologies.

In this paper, the investigation of cross-wedge rolling of serially arranged hybrid parts made of steel and aluminum is described. The focus of the research presented in this publication is the displacement of the joining zone of hybrid parts due to the cross-wedge rolling process. Therefore, finite element simulations have been developed, that allow the investigations of hybrid solid components. After simulation of various variations of the cross-wedge rolling process, i.e.  differently shaped tools and forming velocities, experimental trials were carried out with identical parameter sets. A comparison of simulation and experiment, showed that the simulation model is capable of describing the cross-wedge rolling process of hybrid parts. The standard deviation of the displacement of the joining zone between simulation and experimental trials is 8.8% with regard to all investigated cases.

tailored forming, cross-wedge rolling, material forming, aluminum, steel

Within the Collaborative Research Centre 1153 “Tailored Forming“ a process chain for the manufacturing of hybrid high performance components is developed. Exemplary process steps consist of deposit welding of high performance steel on low-cost steel, pre-shaping by cross-wedge rolling and finishing by milling.
Hard material coatings such as Stellite 6 or Delcrome 253 are used as wear or corrosion protection coatings in industrial applications. Scientists of the Institute of Material Science welded these hard material alloys onto a base material, in this case C22.8, to create a hybrid workpiece. Scientists of the Institut für Integrierte Produktion Hannover have shown that these hybrid workpieces can be formed without defects (e.g. detachment of the coating) by cross-wedge rolling. After forming, the properties of the coatings are retained or in some cases even improved (e.g. the transition zone between base material and coating). By adjustments in the welding process, it was possible to apply the 100Cr6 rolling bearing steel, as of now declared as non-weldable, on the low-cost steel C22.8. 100Cr6 was formed afterwards in its hybrid bonding state with C22.8 by cross-wedge rolling, thus a component-integrated bearing seat was produced. Even after welding and forming, the rolling bearing steel coating could still be quench-hardened to a hardness of over 60 HRC. This paper shows the potential of forming hybrid billets to tailored parts. Since industrially available standard materials can be used for hard material coatings by this approach, even though they are not weldable by conventional methods, it is not necessary to use expensive, for welding designed materials to implement a hybrid component concept.

tailored forming, cross-wedge rolling, hard material coatings, PTA

Within the Collaborative Research Centre (CRC) 1153 Tailored Forming a process chain for the manufacturing of hybrid high performance components is developed. Exemplary process steps consist of deposit welding of high-performance steel onto low cost steel and pre-shaping the component by cross-wedge rolling (CWR), supported by an optical quality control system. A combination of a fringe projection profilometry setup with a thermal imaging camera is used to monitor the components before and after the CWR process. Both geometry and thermal imaging data are combined, assigning temperature values to 3D data points.
In this paper, the acquisition of combined temperature-geometry data is described. The data before and after the CWR is compared to the input and the result data of the forming simulation that was used to design the CWR process. The comparison shows the quality and sustainability of the heating process as well as the influence of the transportation of the hot component prior to forming. Additionally, the accuracy of the used simulation model and software are evaluated by data examination. The examination shows the limits of idealised and simplified assumptions for the simulation, e.g., a homogeneous temperature distribution before forming or the modelling of the heat transfer on contact surfaces.

tailored forming, cross-wedge rolling, material forming, aluminum, steel, optical measurement

Bulk-formed components are used in many applications in automotive and plant engineering. The conditions under which the components are manufactured, often at more than 800°C and thousands of tons of forming force, lead to high die wear. One way to reduce wear is to use suitable protective coatings. Initial basic investigations showed that the use of hard Diamond-like Carbon (DLC) wear-resistant coatings can significantly reduce the tribological effects on the die surface. With new methods such as the use of multilayer layer coatings and temperature measurement on the die surface by use of thin layer sensors, the potential of wear protection for semi-hot massive forming is to be investigated and expanded.

DLC, hot forging, wear

Research projects