Martin Westbomke

Graduation:
M.Sc.
Function:
Project engineer
Practice Areas:
Production planning & control, operation research, supply chain management
Phone:
+49 (0)511 279 76-447
E-Mail:
westbomke@iph-hannover.de
vCard:
vCard
Xing:
https://www.xing.com/profile/Martin_Westbomke4
LinkedIn:
https://www.linkedin.com/in/martin-westbomke-231832ab

Publications

The storage planning is an important component of the factory planning and describes an improvement potential in the times of an increasing global competition. The selection of a suitable storage, commissioning and transport system is a big challenge especially for small and medium-sized enterprises. In a research project of IPH – Institut für Integrierte Produktion Hannover a method for companies will be created to determine the necessary level of versatility and automation to choose an optimal system. This article introduces the research project and explains the approach and first results.

storage planning, sct systems, versatility, automation, software demonstrator

Thousands of wind turbines need to be dismantled and replaced in the next years. The owners of the wind parks have to pay millions to handle this. How you can dismantle quickly, at a low price and ecologically friendly, is part of a research project of the Institut für Integrierte Produktion Hannover (IPH). The huge dismantling wave will start in the next years.

dismantling networks, wind turbines

Disassembling of large-scale products (e. g. wind energy plants, crane and conveyor systems which are known as XXL-Products) becomes increasingly important, as the operating time is limited. The challenge is to optimize the positioning of the complex and expensive disassembling on the operation site on the one hand and the costly transportation of modules to the disassembling factories. For this reason the location and allocation problem will be pictured in a mathematical model within the research project “DemoNet”. This model supports companies to create a XXL-disassembly-network. The research hypothesis assumes: a disassembly under ecological, economical and logistical aspects constitutes the optimum. The extension of a location planning tool forms the basis of the mathematical optimization model for the disassembly of XXL-Products. For solving the problem a genetic algorithms will be used. The result helps companies to arrange disassembling networks for XXL-Products efficiently.

dismantling planing, dismantling networks, impact model

Research projects