Dr.-Ing. Malte Stonis

Function:
Managing director
Phone:
+49 (0)511 279 76-119
E-Mail:
stonis@iph-hannover.de
vCard:
vCard
Xing:
https://www.xing.com/profile/Malte_Stonis
ResearchGate:
http://www.researchgate.net/profile/Malte_Stonis

Doctoral thesis

Defects like folds can arise using forging for the production of long flat pieces made of aluminium. A special defect is the formation of inner folds. These can be seen in the grain flow. Inner folds have a negative effect on the dynamic properties of the forged part. As a production process, forging can be divided into single-directional and multi-directional forging. The formation of inner folds was observed at the single-directional forging. By using the multi-directional forging, a forming operation working from different directions, the forming can be set variably. Thus the development of folds can be prevented. A newly developed method can help in the selection of the forming process and in determining an appropriate tool geometry. Here especially the area is adapted, where the development of inner folds occur. Therefore a calculation model was developed. It integrates a computer-aided identification of the inner folds. Using this model, a correction of the parametrically constructed forging tool is possible.

multidirectional-forging, long flat pieces, aluminium, fibre orientation

Publications

Rising and increasingly volatile energy prices resulting from increased power feeds from renewable sources such as solar and wind energy are confronting manufacturers with new challenges. If these companies procure their power supplies at ?uctuating short-term prices from electricity exchanges or through energy purchasing pools, they can in?uence the result-ing energy costs through production control via its actuating variables while energy consumption remains constant. A form of sequencing that decides at short notice which order will be processed next shows particularly high potential. The energy price-oriented sequencing rule that is introduced in this article prioritises orders with a high energy requirement at times when energy prices are low and gives precedence to orders that require less energy at times when energy prices are high, without neglecting the scheduled completion deadline. However, this sequencing rule can only be applied e?ectively under certain preconditions. These are elaborated in this article by means of a simulation study that will con?rm the way the rule functions.

production planning and control, manufacturing control, sequencing, energy costs

Lot sizing is an important task of production planning and control: basis of lot sizes are order change costs and costs for storage. Models for lot sizing do not consider lot size dependent maintenance costs. However, for a forging company the tool wear is very important, because the tooling costs represent a major part in the production cost. In this article, the deter-ministic lot size model of Andler is extended with lot size dependent maintenance costs. For this purpose, the correlation between lot size and the tool wear is ?rst derived in order to develop a lot size dependent wear function. The linking of a lot size dependent wear function with maintenance costs results in a lot size dependent maintenance cost function, which can be integrated into existing lot size models with a customized total cost function. The validation of the extended lot size model consists of two parts. In the ?rst part, the functionality of the extended lot size model is validated. In the second part, a sensitivity analysis of the lot size is carried out with regard to lot size dependent costs and unit costs.

lot sizing, tool wear, forging industry, sensitivity analysis

In this paper, investigations about the displacement of the joining-zone of serially arranged semi-finished hybrid parts durig cross-wedge rolling are presented. The investigated material combinations are steel-steel (C22 and 41Cr4) and steel-aluminum (20MnCr5 and AlSi1MgMn). The rolling process is designed using FEM-simulations and the cross-wedge rolling process was experimentally investigated afterwards. Research priorities are investigations of the displacement of the joining-zone depending on the main parameters of cross wedge rolling. It could be shown that the forming behaviour of serially arranged hybrid parts made of steel-steel and steel-aluminum can be described using FEM. The deviation of the simulated displacement of the joining-zone compared to the trials is only about 3 %, which is a good approximation.

cross-wedge rolling, steel, aluminum, joining-zone

The investigation of thin flash generation in a precision forging process of an aluminum long part using finite elements analysis (FEA) and corresponding forging trials is described in the presentation. Thin flash generation leads to bad handling and positioning in subsequent process steps and therefore tolerance defects. For investigation purpose, the forging processes were varied by use of different preforms with equal volumes but different mass distributions, while the geometrical parameters of the final part were not varied. 

The forging processes were analyzed by FEA with focus on the value of the form-filling simultaneity depending on the preform geometry. Afterwards, corresponding forging trials were carried out for validation.The results of the experiments and the FEA showed good agreement concerning the part areas were thin flash generation was predicted by FEA and actually occurred in experiments.Preforms with higher values of form-filling simultaneity showed less thin flash generation while preforms with lower values of form-filling simultaneity showed significantly increased thin flash generation.

forging, aluminum, FEA, thin flash generation, prediction

As a result of the increasing feed-in of renewable energies, the volatility of the electricity price rises. Considering this, manufacturers can save energy costs by applying an energy price-oriented sequencing rule. Since the application of this sequencing rule does not only have an impact on the energy costs, a potential analysis is presented in this article which, in addition to the energy costs, also considers the schedule compliance cost of production orders.

cost accounting, manufacturing control, production planning and control

In production, product-related error costs can be reduced by focusing on human production factors, such as considering human performance fluctuations during the day, when production planning with respect to job-shop scheduling. In this article, the flexible job-shop scheduling problem is extended by considering product-related error costs and logistic costs. Product-related error costs are increased by over stressing the operative workers. Logistic costs are based on work in process and throughput time. This cost-based definition enables a production plan to be simultaneously optimized in respect of both error and logistic costs. The product-related error costs and flexible job-shop scheduling problem are described mathematically and a memetic algorithm is also presented as an approach. Within the memetic algorithm, the evolutionary process is supplemented with a local search procedure to improve the ability of solutions and repair procedures to rectify infeasible solutions. The influence of product-related error costs on the total costs of a production plan within job-shop scheduling is presented.

flexible job shop scheduling, memetic algorithm, human perfor-mance fluctuation, error costs

The measurement of torque via sensors as well as the generation of torque form the basis of many industrial sectors. Within a research project an optical and non-contact measurement method to detect the absolute rotation angle and torque was developed. For comparison with the current state of the art torque sensors a test stand was built and compared to a reference torque sensor. The results of this validation are presented in the present paper.

torque, rotation angle, optical, validation

In order to improve the overall efficiency of production facilities through the use of automated guided vehicle systems (AGVs), the availability of the AGVs has to be high. Failures of AGVs have to be minimized. However, if a failure occurs, a successful disturbance management is crucial. Especially for producing companies, economic losses can occur, if material is not at the right place at the right time. Delays can be a hazard to the adherence to delivery dates. In this research project, a support system is developed that automatically generates strategies for the handling of disturbances.

AGV, expert system, automated guided vehicles, case-based reasoning, CBR

Plasma-transferred arc welding (PTA) is a flexible welding process to coat metallic materials with a wide variety of material combinations. At the University of Hanover, this process is currently being qualified for the production of hybrid semi-finished parts for bulk forming products. The technology provides many answers to the questions about cost-effective manufacturing methods in the field of high-performance components. The process shown is a combination of a welding and cross wedge rolling (CWR) process, which is intended to create homogeneous coatings from steel with high carbon equivalents (CEV>0.5). Weak points due to inhomogeneities in later components must be avoided when the parts are used in tribological applications, so the production process has to be very reliable. Therefore it is necessary, that important properties of the joining zone between the material partners such as the coating thickness and metallic microstructure are well known and can be controlled.

The deformation of the weld seams and the microstructure is optically examined. It is shown, that it is possible to convert the original casting structure of the welded layer into a forming structure. The investigations provide a first overview of the possibilities to influence the coating quality by forming processes in the production of welded hybrid semi-finished steel parts.

tailored forming, plasma-transferred arc deposition welding, hybrid parts, cross wedge rolling

In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs.

The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.

memetic algorithm, flexible job-shop scheduling, energy-costs, power peak

In the automotive industry, aluminum forged parts must fulfill lightweight and heavy duty performance requirements. The generation of thin flash between die halves and in the small gaps between the die and punch must be prevented during the flashless forging process in completely enclosed dies. However, thin flash formation is neither predictable nor preventable.

A numerical model is developed based on finite element analysis to investigate and predict the generation of thin flash in aluminum flashless precision forging processes. The significance and effects of the main influencing input parameters, including billet temperature, forming velocity, and width of gap, on different resulting parameters are evaluated. Among all resulting parameters in the established numerical model, hydrostatic pressure and the forming force in the main forming direction have been identified as the most suitable for predicting thin flash generation.

aluminum forging, forging in completely enclosed dies, flashless forging, FEA

A combined measurement method for the optical determination of the absolute rotational angle and torque was realized. Absolute codings of the angle as well as proper production technologies for the production of suitable markings on the shaft were investigated and successfully implemented.

The absolute rotational angle could be measured with a resolution of about 0.001° at an accuracy of better than 0.2° (corresponds to 0.05% f. s.). Torque was determined with an accuracy of about 3% f. s..

The conclusion is that the overall aim was achieved.

optical measurement, torque, absolute angle of rotation

High temperatures up to 1280 °C and high pressures during the forming opperation lead to strong tool wear in forging processes. Increasing tool wear can lead to very high costs. By experiments conducted at the Institut für Integrierte Produktion in Hanover the correlation between tool wear and lot size in hot forging processes was verfied. The findings will help companies to optimise maintenance procedures and therefore reduce cost in the future.

forging, steel, tool wear, lot size

A low energy demand and a fast processing time are required in each industrial process for the production of crankshafts. Crankshafts have a very complex geometry and are forged with a high percentage of flash compared to other forging parts. Recent research showed the feasibility of a flashless forging of crankshafts. One way to forge a flashless crankshaft within three steps is to use cross wedge rolling, multi-directional forging and final forging.

This paper presents the investigation results of the influence of the cross section area reduction in cross wedge rolling on different parameters at multi-directional forging. First, the state of research, the process development and tool design of cross wedge rolling and multi-directional forging are described. Then a parameter study will be presented and the influence of the cross section area reduction on flash generation, billet temperatures, forming degree, forming forces and effective strain are shown. Generally, flash generates because a rotation-symmetric billet is forced into an asymmetric movement. The influence of an increasing cross section area reduction leads to a decreasing amount of flash at the bottom of the crankwebs.

multi-directional forging, cross wedge rolling, crankshaft, parameter study, forming angle

Most of today’s technical parts and components are made of monolithic materials. These mono-material components produced in established production processes reach their limits due to their respective material characteristics. Thus, a significant increase in production quality and efficiency can only be achieved by combining different materials in one part. Bulk forming of previously joined semi-finished products to net shape hybrid components that consist of two different materials is a promising method to produce parts with locally optimized characteristics. This new production process chain offers a number of advantages compared to conventional manufacturing technologies. Examples are the production of specific load-adapted forged parts with a high level of material utilization, an improvement of the joining zone caused by the following forming process and an easy to implement joining process due to the simple geometries of the semi-finished products.

This paper describes the production process of hybrid steel parts, produced by combining a plasma-transferred arc deposition welding process with a subsequent cross wedge rolling process. This innovative process chain enables the production of hybrid parts. To evaluate the developed process chain, coating thickness of the billet is analysed before and after cross wedge rolling. It could be shown, that the forming process leads to an improvement of the coating, meaning a more homogeneous distribution along the main axis.

process chain, plasma-transferred arc deposition welding, hybrid parts, cross wedge rolling

In recent years, the requirements for technical components have steadily been increasing. This development is intensified by the desire for products with lower weight, smaller size and extended functionality, but also higher resistance against specific stresses.

The superior aim of the Collaborative Research Centre 1153 "Tailored Forming" is to develop potentials for hybrid solid components on the basis of a new process chain by using joined semi-finished workpieces.

This paper presents the approach and first results of selected subprojects for semi-finished workpiece production by composite extrusion presses, for forming the hybrid semi-finished products by means of cross wedge rolling, die forging and extrusion, and numerical failure prediction of the joining zones. This provides an overview of possible lightweight strategies in the area of bulk forming by the use of pre-joined semi-finished workpieces.

tailored forming, semi-finished workpiece production, forming, cross wedge rolling

Different challenges arise in cross wedge rolling hybrid parts depending of the material arrangement (serial or coaxial) which need to be investigated fundamentally first.

In cross wedge rolling of serial components, the controlled forming of the joining zone is the greatest challenge. The forming behaviour of the component halves is different, depending on the flow stress of the materials used. In order to allow the forming process to be carried out in a controlled manner, the forming behaviour was first analysed with regard to the displacement and quality of the joining zone, and then possibilities were determined with which the forming can be effected in a targeted manner. For this purpose, the influencing parameters (workpiece temperature, forming speed, cross-section reduction, shoulder and wedge angle) were determined systematically using the Finite Element method, and the investigations were then verified experimentally. In order to influence the forming behaviour the investigations include structural measures (e.g. unequal tool halves) as well as process-related parameters (e.g. unequal temperature distribution).

Cross wedge rolling of coaxial components has other challenges due to the component construction. The aim is to be able to specifically influence the course of the thickness of the applied coating during the forming. Therefore finite element simulations were carried out to determine the influencing parameters. By a systematic investigation of the test parameters according to the DoE method, the layer thickness before the deformation as well as the cross-section reduction are parameters with the greatest influences on the course of the layer thickness after the deformation gave. The results obtained were subsequently verified in experimental tests.

cross wedge rolling, steel, aluminum, joining zone, coating thickness

The volatility of electricity prices is steadily increasing due to the growing expansion of renewable energies. This is particularly observable at the electricity exchange. Small and medium-sized enterprises (SMEs) in the manufacturing sector can save energy costs due to these fluctuations through targeted load management methods. To increase this potential, SMEs need to use smart meters and obtain their electricity at pricest as close to those at the electricity exchange as possible.

power procurement, electricity exchange, load management, electricity costs

The dismantling of disused industrial facilities such as nuclear power plants or refineries is an enormous challenge for the planning and control of the logistic processes. Existing control models do not meet the requirements for a proper dismantling of industrial plants. Therefore, this paper presents an approach for the control of dismantling and post-processing processes (e.g. decontamination) in plant decommissioning. In contrast to existing approaches, the dismantling sequence and depth are selected depending on the capacity utilization of required post-processing processes by also considering individual characteristics of respective dismantling tasks (e.g. decontamination success rate, uncertainties regarding the process times). The results can be used in the dismantling of industrial plants (e.g. nuclear power plants) to reduce dismantling time and costs by avoiding bottlenecks such as capacity constraints.

dismantling management, logistics planning and control models, nuclear power plant dismantling

For lighter and less consuming car engines the uncercut forging of a steel piston the process has to be designed at first. Therefore the process had been set up in FEA simulations and developed until the final forging sequence was found.

FEA, forging, forge, undercut, multidirectional