Theme | XXL products, Ecology, Artificial Intelligence |
---|---|
Project title | Increase of reliability of condition prognosis of offshore wind turbines by using data mining algorithms (SteigProg) |
Project duration | 01.07.2010 – 30.06.2012 |
Download |
Publications about the project
The range of structure sizes for industrial products produced today is increasingly expanding. This trend is evident in both small-scale (e.g. semiconductor applications) and large-scale (e.g. wind turbine rotors) products. While definitions already exist for smaller scale device structures, the conceptual distinction between conventional large products and large scale products is currently insufficient. In this study, we present a potential basis for the definition of large scale products. To achieve this, we derive hypotheses and examine these in the context of an empirical study using the examples of several sample products. It is shown that the transition from conventional products to large scale products is characterized by a disproportionate increase in product costs due to the augmentation of a characteristic product feature. Eventually we derive a proposed definition which characterizes large scale products in the field of production engineering.
xxl-product, large-scale, xxl, definition
A breakdown of a wind turbine entails high costs. The more reliable the prognosis of the condition of every single component is carried out, the better the maintenance can be planned. For example the maintenance could run in a time with low wind yield. Furthermore, impending breakdowns can be detected and avoided. Within the project “SteigProg” data-mining algorithms were analyzed for their ability to condition prognosis in wind turbines. An improved condition prognosis contributes a more efficient operation of wind turbines. Measurable savings result by minimizing downtimes, improved planning and shortening of maintenance operations.
condition prognosis, wind turbines
To meet the growing demand for energy, further developments are necessary in the field of renewable energies. In two research projects, engineers of IPH - Institut für Integrierte Produktion Hannover have investigated how to increase the efficiency of wind turbines.
xxl products, large-scale products, wind turbines, data mining