Publications

How can additive process chains be automated and print quality monitored? How is a component made of metal and plastic created in multi-material printing? Scientists from Lower Saxony ADDITIV have been researching this and more in the past three years.

additive manufacturing, 3d printing, automation, quality assurance

In this article, a method for automatic visual obstruction detection and masktype congruent visual obstruction compensation, based on the principal of augmented reality, is presented. The method is based on the superposition of a simulated operator’s field of view with information from a scene reconstructed by two RGB-Cameras. These cameras are arranged in a way that they can record the scene information be-hind the view restriction. Besides the presentation of the test rig, a detailed presentation of the image pro-cessing software is given. With a view to the later use of the system in a forklift truck, the real-time capa-bility of the system will be tested and optimization possibilities will be discussed.

augmented reality, driver assistance system, forklift trucks, image processing, obstacle detection

Within the project "Development of ergonomically optimized forging tongs for force-supported and vibration-damped handling of forged parts (ErgoZang)", the IPH is concerned with the stresses and strains on employees in the forging industry.
In particular, the stresses caused by transmitted shocks and vibrations of the employees' hand-arm system are in the foreground.
Within the lecture, several novel forging tong concepts were presented, which can reduce the shocks and vibrations.

 

Ergonomics, forging tongs, shock and vibration reduction

To be able to meet the challenges of globalization, the optimization of internal transport is becoming increasingly important. Due to the further development, drones are an innovative material handling technology. The use of drones can be cost-efficient, especially for time-critical transport tasks. However, drones are characterized by a very low payload and very high operating costs. Therefore drones are in some cases more economical than conventional means of transport, but they do not offer an universal solution for all internal transport tasks.

drones, intralogistics, transport, transport systems, economic efficiency

Forging can be used to produce components with excellent mechanical properties. However, conventional drop forging does not offer the possibility of introducing undercuts into a workpiece and creating complex geometries with one forging stroke.

forging, undercuts

Solid formed components are subject to ever higher load requirements while at the same time striving for resource efficiency.
ciency at the same time. An ultrafine-grained microstructure can improve the strength and ductility of the component. This makes it possible to design smaller and lighter components and to exploit lightweight construction potential. One possibility
process for producing an ultrafine-grained microstructure is cross wedge rolling.

 

Cross wedge rolling, Fine-grained structure, Lightweight construction

Automated guided vehicles are a crucial component for more efficient production systems in intralogistics, but they have weaknesses in human-machine interaction. Scientists at IPH are developing a gesture-based control system to make the interaction intuitive and increase its acceptance.

Driverless transport vehicles, guidance control, gesture-based control

The service life of rolling contacts is dependent on many factors. The choice of materials in particular has a major influence on when, for example, a ball bearing mayfail.Within an exemplary process chain for the production of hybrid high-performance components through tailored forming, hybrid solid components made of at least two different steel alloys are investigated. The aim is to create parts that have improved properties compared to monolithic parts of the same geometry. In orderto achievethis, several materials are joined prior to a forming operation. In this work, hybrid shafts created by either plasma(PTA)orlaser metal deposition (LMD-W) welding are formed via cross-wedge rolling(CWR)to investigate the resulting thickness of the material deposited in the area of the bearing seat. Additionally,finite element analysis (FEA)simulations of the CWRprocessare compared with experimental CWR results to validate the coating thickness estimation done via simulation. This allows for more accurate predictionsofthe cladding materialgeometry after CWR,and the desired welding seam geometrycan be selected by calculating the cladding thicknessvia CWR simulation.

Cross-Wedge Rolling, Forming, hybrid, tailored forming

In a research project at the Institute for Integrated Production in Hanover, the process parameters for cross-wedge rolling are to be determined with which an ultrafine microstructure can be achieved in cylindrical blanks. The aim is to achieve grain sizes of the rolled part in the range of 500 nm.

Process development, cross wedge rolling, material properties,Ultra fine microstructure

How can the restructuring of a factory layout be planned efficiently and without errors? Thanks to digital three-dimensional factory planning, the quality of planning projects can be improved and the implementation period shortened. This is demonstrated by the exemplary use of a digital tool in a project of the Mittelstand 4.0 Kompetenzzentrum Hannover at Zerspanungstechnik Kuhn Edelstahl GmbH.

factory planning, digital factory, digital twin, drone

The use of digital assistance systems can contribute to the reduction of non-value-added activities and thus has significant benefits for small and medium-sized enterprises. This is shown by the method-oriented concept development for the introduction of an assistance system at Tietjen GmbH

digital assistance system

This paper presents concepts for shock and vibration reduction of a forging tongs. In the forging industry, hand-operated forging tongs are often used for the machining of forged parts. Here, the employees are exposed to high loads from shocks and vibrations of the forming machines. A simulation model that has been created evaluates concepts for reducing the shocks and vibrations during forging

Ergonomics, forging, shock and vibration reduction

Within the project "CoMoGear - Condition Monitoring of Marine Gearboxes based on Wireless, Energy-Autonomous Sensor Nodes", an energy-autonomous, wireless sensor network was developed for condition diagnosis of highly stressed rotating components in marine gearboxes was developed. This allows intelligent, condition-based monitoring and maintenance, paving the way for unmanned shipping.

sensor nodes, condition monitoring, marine gearbox, energy harvesting

Due to their design, the lift mast and attachments on industrial trucks, among other things, can restrict the operator's field of vision. In the project "Virtual visibility improvement and intuitive interaction through augmented reality on industrial trucks (Visier)", this situation is to be counteracted with the development of a new driver assistance system. With the aid of augmented reality (AR) goggles, the aim is to create the conditions for the driver to be able to block out visual restrictions and thus take a look behind the cargo and the mast in order to detect hazards and obstacles at an early stage.

Augmented Reality, assistance system, industrial trucks

In many companies, the demands placed on in-house processes is increasing in order to get the maximum benefit from available capacities. This includes, among other things, avoiding waste of internal capacity. With the optimization of route sheets by adapting the level of detail to the needs of production, a significant contribution can already be made during work preparation. Improving in the provision of information can have a positive impact on the efficiency of a company by reducing non-value-adding activities.

route sheets, work preparation, level of detail, provision of information, MES-implementation

A major challenge of logistics within manufacturing companies is the optimization of transport systems. Due to Industry 4.0, companies are more willing than ever to find and implement as yet unknown rationalization potential in this area. Currently, the use of drones in internal logistics is considered to have such potential. Especially when dealing with unplanned material transports for missing parts in assemblies or spare parts for repairs, the unmanned aerial vehicles could prove to be problem solvers. However, the use of drones is still a largely unexplored area, especially on factory floors.

drones, intralogistics, transport

To manufacture semi-finished hybrid workpieces with tailored properties, a finite element simulation assisted process chain design was investigated. This includes the process steps of cross wedge rolling, hot geometry inspection, induction hardening, and fatigue testing. The process chain allows the utilisation of material combinations such as high-strength steels with low-cost and easy to process steels. Here, plasma transferred arc welding is applied to supply the process chain with hybrid specimen featuring different steel grades. An overview of the numerical approaches to consider the various physical phenomena in each of the process steps is presented. The properties of the component behaviour were investigated via the finite element method (FEM) and theoretical approaches.

Cross-Wedge Rolling, Forming, hybrid, tailored forming

For the industrial establishment of multi-directional forging processes, expected tool life and economical production are essential. In this paper, the influence of different process parameters on the wear behavior of slider tools is investigated within a simulation study. The results make it possible to identify the wear-inducing process parameters and to optimize a process design in relation to the resulting tool life.

wear, slider tools, forging processes

Processing technology to improve the manufacturing of thermoelectric generators (TEGs) is a growing field of research. In this paper, an adaptable and scalable process comprising spray-coating and laser structuring for fast and easy TEG manufacturing is presented. The developed process combines additive and subtractive processing technology towards an adaptable ceramic-based TEG, which is applicable at high temperatures and shows a high optimization potential. As a prototype, a TEG based on Ca3Co4O9 (CCO) and Ag on a ceramic substrate was prepared. Microstructural and thermoelectric characterization is shown, reaching up to 1.65 μW cm−2 at 673 K and a ΔT of 100 K. The high controllability of the developed process also enables adaptation for different kinds of thermoelectric materials.

thermoelectric, laser structuring

In this work we present an application of the virtual element method (VEM) to a forming process of hybrid metallic structures by cross-wedge rolling. The modeling of that process is embedded in a thermomechanical framework undergoing large deformations. Since forming processes include mostly huge displacements within a plastic regime, the difficulty of an accurate numerical treatment arises. VEM illustrates a stable, robust and quadratic convergence rate under extreme loading conditions in many fields of numerical mechanics. Numerically, the forming process is achieved by assigning time-dependent boundary conditions instead of modeling the contact mechanics yielding to a simplified formulation. Based on the two metallic combinations of steel and aluminum, different material properties are considered in the simulations. The purpose of this contribution is to illustrate the effectiveness of such a non-contact macroscopic framework by employing suitable boundary conditions within a virtual element scheme. A comparison with the classical finite element method (FEM) is performed to demonstrate the efficiency of the chosen approach. The numerical examples proposed in this work stem out from the DFG Collaborative Research Centre (CRC) 1153 “Process chain for the production of hybrid high-performance components through tailored forming”.

simulation, FEM, bulk metal forming, tailiored forming

Your contact person