Publications

The realization of a planned layout concept represents a complex subtask within factory planning. In particular, the temporal arrangement of the necessary relocation steps, taking into account existing restrictions, is usually carried out manually according to the current state of the art. Therefore, an easy-to-use method for planning a factory move for reorganization projects was developed in a research project, which can be applied by companies in a practical context.

factory planning, removal planning, project scheduling, optimization, operations research

The use of machine learning has already become es-tablished and is applied in many areas of everyday life. Machine Learning is also becoming increasingly important in the field of production and logistics. However, the complex implementation poses major challenges, especially for small and medium-sized enterprises (SMEs). This leads to the fact that many SMEs refrain from using Machine Learning applications. For this reason, IPH – Institut für Integrierte Produktion and IPRI – International Performance Research Institute are working together on the research project „MLready“ to develop an implementation strategy that will enable SMEs to im-plement and use machine learning easily and efficiently.

machine learning, SMEs, production, ML implementation strategy

Although factory planning is widely recognized as a way to significantly enhance manufacturing productivity, the associated costs in terms of time and money can be prohibitive. In this paper, we present a solution to this challenge through the development of a Software-in-the-loop (SITL) framework that leverages an Unmanned Aircraft System (UAS) in an autonomous capacity. The framework incorporates simulated sensors, a UAS, and a virtual factory environment. Moreover, we propose a Deep Reinforcement Learning (DRL) agent that is capable of collision avoidance and exploration using the Dueling Double Deep Q-Network (3DQN) with prioritized experience replay.

Artificial Intelligence, reinforcement learning, Unmanned Aircraft Systems

Forgings are produced in several process steps, the so-called forging sequence. The design of efficient forging sequences is a very complex and iterative development process. In order to automate this process and to reduce the development time, a method is presented here, which automatically generates multi-stage forging sequences for different forging geometries on the basis of the component geometry (STL file). The method was developed for closed die forging. The individual modules of this forging sequence design method (FSD method) as well as the functioning of the algorithm for the generation of the intermediate forms are presented. The method is applied to different forgings with different geometrical characteristics. The generated forging sequences are checked with FE simulations for the quality criteria form filling and freedom from folds. The simulation results show that the developed FSD method provides good approximate solutions for an initial design of forging sequences for closed die forging in a short time.

forging, forging sequences, CAD, automated process design, closed die forging

Forgings are produced in several process steps, the so-called forging sequence. The design of efficient forging sequences is a very complex and iterative development process. In order to automate this process and to reduce the development time, a method is presented here, which automatically generates multi-stage forging sequences for different forging geometries on the basis of the component geometry (STL file). The method was developed for closed die forging. The individual modules of this forging sequence design method (FSD method) as well as the functioning of the algorithm for the generation of the intermediate forms are presented. The method is applied to different forgings with different geometrical characteristics. The generated forging sequences are checked with FE simulations for the quality criteria form filling and freedom from folds. The simulation results show that the developed FSD method provides good approximate solutions for an initial design of forging sequences for closed die forging in a short time.

forging sequence, forging sequence planning, automation

The realization of reorganization projects represents a complex and independent planning task within the framework of factory layout planning. Only little methodical knowledge exists, which considers the temporal, spatial and organizational restrictions in the creation of a schedule. This paper aims to present the interdependencies in the planning and execution of realization projects and thus to provide a basis for discussion for further investigations in the field of scheduling factory relocations for the reorganization of factory objects.

factory planning, relocation planning, project planning, effect modeling

Process Optimization through Thin Flash Prevention. Due to the good flow properties of aluminum, the material tends to flow into tool gaps during flashless precision forging and produce the so-called thin flash. For the industrial implementation of flashless precision forging processes, an innovative prediction method for thin flash as well as sealing concepts are to be developed in cooperation with an industrial partner. Simulative studies show that local form filling does not correlate with high pressure or an increased potential for thin flash.

thin flash, FEM-simulation, sealing concepts, precision forging, forming technology

Progressive digitalization and new technologies have had a major impact on the development of artificial intelligence (AI) in recent years. Particularly for companies in the skilled trades sector, the time factor is taking on an increasingly changing customer behavior, more complex and demanding tasks, and other challenges, the time factor is playing an increasingly decisive role.

artificial intelligence, craft, guideline

A new process chain for the manufacturing of load-adapted hybrid components is presented. The "Tailored Forming” process chain consists of a deposition welding process, hot forming, machining and an optional heat treatment. This paper focuses on the combination of laser hot-wire cladding with subsequent hot forming to produce hybrid components. The applicability is investigated for different material combinations and component geometries, e.g. a shaft with a bearing seat or a bevel gear. Austenitic stainless steel AISI 316L and martensitic valve steel AISI HNV3 are used as cladding materials, mild steel AISI 1022M and case hardening steel AISI 5120 are used as base materials. The resulting component properties after laser hot-wire cladding and hot forming such as hardness, microstructure and residual stress state are presented. In the cladding and the heat-affected zone, the hot forming process causes a transformation from a welding microstructure to a fine-grained forming microstructure. Hot forming significantly affects the residual stress state in the cladding the resulting residual stress state depends on the material combination.

laser hot-wire cladding, cladding, hot forming, residual stress, tailored forming

Geometry, design, and processing in addition to the thermoelectric material properties have a significant influence on the economic efficiency and performance of thermoelectric generators (TEGs). While conventional BULK TEGs are elaborate to manufacture and allow only limited variations in geometry, printed TEGs are often restricted in their application and processing temperature due to the use of organic materials. In this work, a proof-of-concept for fabricating modular, customizable, and temperature-stable TEGs is demonstrated by applying an alternative laser process. For this purpose, low temperature cofired ceramics substrates were coated over a large area, freely structured and cut without masks by a laser and sintered to a solid structure in a single optimized thermal post-processing. A scalable design with complex geometry and large cooling surface for application on a hot shaft was realized to prove feasibility.

thermoelectric, printed electronic, laser structuring, printed ceramics, spray coating

The digital development of spaces within the city of Hannover by means of a digital image makes it possible to cover the usage needs of spaces more efficiently and in line with the requirements. The crea-tion of a digital image, which develops new possibilities for access to public space, requires the use of different sensors such as LiDAR sensors and tracking cameras. In order to select suitable sensors that can be used with UAS, the requirements for the overall system are first defined, which are derived in functional requirements for the sensor technology. Subsequently, the degree of fulfilment of the functional requirements by the different sensors

5G, UAS, digital image, digital twin

In the non-circular rolling, the feasibility of rolling several mutually offset, locally non-round shaped elements into a cylindrical semi-finished product are investigated. One sub-area of the investigations is the rolling of two elliptical sections.

From three different calculation concepts for the determination of the tool engraving, one was chosen for a simulative parameter study. The main influencing variables, including the length and width of the engraving and a process window, were identified.

forming technology, manufacturing technology, FEM

In order to use laser transmission welding (LTW) for additively manufactured parts such as prototypes, small series, or one-off products, an enhanced process knowledge is needed to overcome the difficulties in the part composition resulting from the additive manufacturing process itself. In comparison to an injection molding process for thermoplastic parts, the additive manufacturing process fused deposition modeling leads to an inhomogeneous structure with trapped air inside the volume.

In this paper, a neural network-based expert system is presented that provides the user with process knowledge in order to improve the weld seam quality of laser welded additively manufactured parts. Both additive manufacturing and LTW process are assisted by the expert system. First, the designed expert system supports the user in setting up the additive manufacturing process to increase the transmissivity. During welding, the additive manufacturing and LTW process parameters are used to predict the weld seam strength. To create the database for the expert system, specimens of transparent and black polylactide are additively manufactured. In order to change the transmissivity at an emission wavelength of 940?nm of the diode laser used, the manufacturing parameters for the transparent parts are varied. The transmissivity of the parts is measured with a spectroscope. The transparent samples are welded to the black samples with laser powers between 8 and 14?W in the overlap configuration and shear tensile tests are performed. In this work, the predictions of the transmissivity and the shear tensile force are demonstrated with an accuracy of more than 88.1% of the neural networks used for the expert system.

Additive manufacturing, laser transmission welding, neural networks, expert system

In order to make the production of complex geometries as efficient as possible, several forming stages are generally used. In these, the billet is first heated homogeneously and then forged via several preliminary and intermediate stages as well as final forming. Previous investigations have shown that significant material savings can be achieved by using inhomogeneous, rather than homogeneous, billet heating. A limiting factor in the practical implementation of inhomogeneous heating is the temperature gradient between the hot and warm regions of the billet.

This study therefore investigates the influence of the length of the temperature gradient on the blank size required to achieve form filling for a given finished part geometry. For this purpose, a simulative parameter study was carried out with three temperature transitions of different lengths and two different finished part sizes.

It was shown that, depending on the finished part size and the length of the temperature gradient, between 3.31% and 17.49% material can be saved compared to a homogeneously heated billet. The length of the temperature gradient thus has a significant influence on the material savings potential.

bulk forming, inhomogeneous heating, resource efficiency, FEA

The temporally and spatially accurate display of information in augmented reality (AR) systems is essential for immersion and operational reliability when using the technology. We developed an assistant system using a head-mounted display (HMD) to hide visual restrictions on forklifts. We propose a method to evaluate the accuracy and latency of AR systems using HMD. For measuring accuracy, we compare the deviation between real and virtual markers. For latency measurement, we count the frame difference between real and virtual events. We present the influence of different system parameters and dynamics on latency and overlay accuracy.

augmented reality, image processing, driver assistance system, forklift trucks

Additive manufacturing enables the economical production of complex components with a high degree of customization. Therefore, the medical industry is using the advantages of additive manufacturing to produce individualized medical devices. Medical devices are subject to special quality control requirements that additive manufacturing processes do not meet yet. This article deals with the introduction of an in situ process monitoring concept using the example of fused deposition modeling. The process monitoring is carried out by a quality model, which accesses the data of a self-developed sensor concept integrated in the printer. This data is analyzed using a machine learning pipeline to predict process and product quality. Thereby, the machine learning pipeline consist of several sequential steps, ranging from data extraction and preprocessing to model training and deployment. The procedure presented for ensuring print quality forms a basis for the production of safety-relevant components in batch size one and extends conventional quality assurance methods in additive manufacturing.

additive manufacturing, quality monitoring, fused deposition modeling, artificial intelligence

Process monitoring strategies allow wear-related conditions of forging dies to be detected and predicted. The prediction of the wear condition allows intelligent maintenance strategies. This allows residual tool life to be fully utilized, scrap to be reduced and downtime to be calculated. The content of this article is an economic analysis for calculating the payback period of a process monitoring system.

forging, process monitoring, economic efficiency

Laser transmission welding (LTW) is a known technique to join conventionally produced thermoplastic parts, e.g. injected molded parts. When using LTW for additively manufactured parts (usually prototypes, small series), this technique has to be evolved to overcome the difficulties in the part composition resulted in the additive manufacturing process itself.

In this paper, a method is presented to enhance the weld seam quality of laser welded additively manufactured parts assisted by a neural network-based expert system. To validate the expert system, specimens are additively manufactured from polylactide. The parameters of the additive manufacturing process, the transmissivity, and the LTW process parameters are used to predict the shear tensile force with the neural network. The transparent samples are welded to black absorbent samples in overlap configuration and shear tensile tests are performed. In this work, the prediction of the shear tensile force with an accuracy of 88.1 % of the neuronal network based expert system is demonstrated.

Additive manufacturing, laser transmission welding, neural networks, expert system

During flat die rolling, two die plates pass each other and form the cylindrical semi-finished product enclosed within. Non-circular rolling examines the rolling of multiple, locally nonround geometries such as eccentrics. With the aid of statistical experimental design, a simulative parameter investigation has been carried out, main influencing variables have been recognised and process windows identified.

non-round, eccentric, flat jaw tools, preforms, intermediate forms, FEM

How can additively manufactured components be laser welded? Their layered structure makes the welding process more complicated than for conventionally produced parts. IPH and LZH are jointly researching how components can nevertheless be joined in a quality-assured manner.

Additive manufacturing, 3D printing, laser transmission welding, joining, quality

Your contact person