Prof. Dr.-Ing. Ludger Overmeyer

Managing partner & Spokesperson of Management
+49 (0)511 279 76-119


The machine learning based method for layout optimization of smallscale modular conveyor systems, which is developed within a research project at IPH – Institut für Integrierte Produktion Hannover gGmbH, provides SMEs a decision support, which enables them to execute complex layout planning independently. In addition, the machine learning method is intended to reduce the cost and time required for planning and to improve the quality of the solution compared to manual layout design.

Small-scale modular conveyors, conveyor systems, machine learning, artificial intelligence

Factory planning is an important tool for
manufacturing companies to raise their efficiency and to
maintain their competitiveness by changing market or
customer requirements. A special challenge is the acquisition
of layout data and the processing of this data in suitable
planning tools. Current approaches still measure manually
or have to transfer acquired data from laser scanners by
hand into planning tools, which leads to a high effort and
error proneness.
This paper presents a holistic concept for automated
and systematic data acquisition and processing for factory
planning processes.

3D factory planning, automated drone flight, point cloud processing, 3D layout scan

In this article, a method for automatic visual obstruction detection and mask-type congruent visual obstruction compensation, based on the principal of augmented reality, is presented. The method is based on the superposition of a simulated operator's field of view with information from a scene reconstructed by two RGB-Cameras. These cameras are arranged in a way that they can record the scene information behind the view restriction. Besides the presentation of the test rig, a detailed presentation of the image processing software is given. With a view to the later use of the system in a forklift truck, the real-time capability of the system will be tested and optimization possibilities will be discussed.

augmented reality, visual obstruction correction, forklift truck, image processing software

The service life of rolling contacts is dependent on many factors. The choice of materials in particular has a major influence on when, for example, a ball bearing mayfail.Within an exemplary process chain for the production of hybrid high-performance components through tailored forming, hybrid solid components made of at least two different steel alloys are investigated. The aim is to create parts that have improved properties compared to monolithic parts of the same geometry. In orderto achievethis, several materials are joined prior to a forming operation. In this work, hybrid shafts created by either plasma(PTA)orlaser metal deposition (LMD-W) welding are formed via cross-wedge rolling(CWR)to investigate the resulting thickness of the material deposited in the area of the bearing seat. Additionally,finite element analysis (FEA)simulations of the CWRprocessare compared with experimental CWR results to validate the coating thickness estimation done via simulation. This allows for more accurate predictionsofthe cladding materialgeometry after CWR,and the desired welding seam geometrycan be selected by calculating the cladding thicknessvia CWR simulation.

Cross-Wedge Rolling, Forming, hybrid, tailored forming

Upfront investment costs for the tooling of injection molds are the basis for deciding if a mold is tooled and hence if a part is viable for mass-production. If tooling costs are too high, a product may not viable for production. If tooling costs are estimated too low by the tool shop, contract implications may arise.
The goal of this research is to develop a method with humanlike quotation accuracy, achieve standardization, factor in historic quotation data and shorten quotation process times. The machine learning approach developed is based on geometry data of parts and additional meta-information.

injection molding, tooling, industry 4.0

Quality assurance methods are a central success factor for the further industrialization of additive manufacturing. This paper presents an approach for an optical inspection system that controls the quality of additive material extrusion layer by layer. The inspection task gets analyzed, hardware components for data acquisition are designed and a first step towards texture-analytical detection of defects is presented.

additive manufacturing, 3d printing, material extrusion, fused deposition modeling, image processing

The processing of ceramics is an important technology for various technical applications. In this paper, a highly
controllable process consisting of spray-coating and laser structuring to design ceramic layers on a versatile
applicable substrate is presented. A thermoelectric oxide, Ca3Co4O9, which is a type of thermoelectric material,
is used in the process and applied to a flexible ceramic substrate. The resulting structures have highly controllable
shapes and good thermoelectric properties, and they can be used to produce a printable thermoelectric
generator (TEG). The use of a flexible ceramic substrate and the high feasibility of the process lead to a universally
applicable procedure that can be used to process ceramics with unique structures and designs.

thermoelectric, printed electronic, laser structuring, printed ceramics, spray coating

This article shows how the abilities known to humans to be flexible and adapt to changing environmental conditions, which are reflected in human cognitive characteristics, can be transferred to industrial trucks in intralogistics. As examples for the implementation of Industry 4.0 in intralogistics, technologies are presented that enable industrial trucks to recognize their environment, communicate information, draw conclusions, act autonomously, make decisions, learn or plan. These capabilities will be realized by an optical positioning system for position determination, camera-based storage/retrieval support and sensor technology integrated into tires, as well as novel forms of interaction for industrial trucks in the form of speech and gestures.

automated guided vehicle, augmented reality, smart glasses

Driverless transport systems are a building block for more efficient production systems in intralogistics, but have weaknesses in human-machine interaction. In a complex research project, a voice-based assignment is being developed, among other things, which is intended to make human-machine interaction more intuitive and increase its acceptance.

automated guided vehicle, augmented reality, smart glasses, voice control

Belt conveyor systems are an excellent way of conveying bulk material. With increasing load and transport distance, these systems become larger and energy efficiency becomes an important factor. Rollers are an integral part of belt conveyor systems. The running behaviour of idlers during operation has an impact on the energy efficiency of the entire system. The development of driven idlers is seen as one way to reduce the energy consumption of belt conveyor systems. This contribution shows that the investigation of conventional and driven idlers under different conditions is necessary and that a test rig for the investigation of these idlers has been developed at the Institut für Integrierte Produktion Hannover.

idlers, rollers, driven idler, bulk material handling

The Collaborative Research Centre 1153 (CRC 1153) “Process chain for the production of hybrid high-performance components through tailored forming” aims to develop new process chains for the production of hybrid bulk components using joined semi-finished workpieces. The subproject B1 investigates the formability of hybrid parts using cross-wedge rolling. This study investigates the reduction of the coating thickness of coaxially arranged semi-finished hybrid parts through cross-wedge rolling. The investigated parts are made of two steels (1.0460 and 1.4718) via laser cladding with hot-wire. The rolling process is designed by finite element (FE)-simulations and later experimentally investigated. Research priorities include investigations of the difference in the coating thickness of the laser cladded 1.4718 before and after cross-wedge rolling depending on the wedge angle, cross-section reduction, and the forming speed. Also, the simulations and the experimental trials are compared to verify the possibility of predicting the thickness via finite element analysis (FEA). The main finding was the ability to describe the forming behavior of coaxially arranged hybrid parts at a cross-section reduction of 20% using FEA. For a cross-section reduction of 70% the results showed a larger deviation between simulation and experimental trials. The deviations were between 0.8% and 26.2%.

cross-wedge rolling, hybrid forming, FEA, coating thickness

Abstract: For factory planning projects the layout capturing and layout processing process need a huge amount of effort, because they are typically done by hand. These processes could be accelerated and optimized by using a drone and automated analysis algorithms. Furthermore, this article shows a way to raise the digitization level for industrial processes. The key aspect lies on the usage of a drone in indoor environment and the processing of three-dimensional point cloud models for factory planning processes.

drone, factory planning, 3D-factory layout, object recognition

In this paper, the validation of an inductive sensor for an energy self-sufficient sensor for condition monitoring of wet-running steel disc clutches in marine gearboxes is presented. For a reliable operation of these a permanent monitoring of their state is advisable. As part of condition-based maintenance, more and more sensors are being installed in machines. Reliability becomes even more important when people are endangered by possible failure of the machines. In shipping, it is essential that, for example, the powertrain and thus the transmission are in perfect condition. In case of long distance traveling, wear or even damage of important components has to be known so that maintenance can be carried out proactively. To address this need an energy self-sufficient and wireless sensor network is developed. Miniaturized sensor nodes monitor torque, rotational speeds, temperatures as well as the wear condition of the torque transmitting components. The energy needed to operate these sensors is obtained from the surrounding environment. Thus, the system operates wirelessly and without an external energy supply, whereby the installation and maintenance costs decrease significantly. In addition to the concept of sensor integration in the transmission, the energy harvesting concept is also described in more detail. Finally, measurements are taken in a gear-like environment and the behavior of a magnetoinductive sensor in a not constantly supplied situation has been examined.

ship, gearbox, wear, sensor, torque

This paper describes the development and prototypical implementation of an energy self-sufficient sensor for condition monitoring of wet-running steel disc clutches in marine gearboxes. For the precise control of an automated system and the monitoring of its performance, the knowledge about the possible wear is an essential prerequisite. In addition, the storage of sensor data over the life of the system offers the possibility of long-term condition monitoring. The combination with various other technological components creates a solution that enables cost-effective condition monitoring of marine gearboxes. Compared to existing systems, for example, the costs for installation and maintenance are significantly reduced. Both the methodology from the morphological box to the fine concept as well as the first measurements of the sensors are presented.

automated system, condition monitoring, metrology, clutch, gearbox

Structured factory planning is a key to ensure the competitiveness concerning to the increasing pressure from globalization and the high market dynamic. Companies though avoid to do factory planning projects, because of the high effort. For this reason, the processes of factory layout capture and factory layout assessment are in need of improvement in order to increase the efficiency, which will be achieved through new technologies and a semi automation of the processes.

factory planning, drone, photgrammetry, laserscan, image data processing

Black marking as micrometer scaled binary coding applied on shafts by ultrashort pulsed lasers with high contrast and without ablation as a non-contact sensor system for combined measurement of angular position and torque.

laser materials processing, sensors, absorption, image analysis

The measurement of the absolute rotational angle and torque via sensors forms the basis for many industrial sectors. Until now, combined sensors have not been available, so that a lot of installation space is occupied by sensor setups. In addition, the sensor setups get expensive quickly. Therefore, an optical and non-contact measurement method to detect the absolute angle of rotation and torque was developed. This paper presents the validation methodology, the setup of the test bench and the validation results. With an angular resolution of 0.001 degree and an accuracy of more than 0.05 percent, the results are promising. However, for industrial application further investigations on determining torque and miniaturizing the optical setup are required.

absolute angular position, angle difference, sensor, torque

This paper describes the production process of serially arranged hybrid steel parts, produced by combining a laser welding process with a subsequent cross wedge rolling process. The presented results are only a first approach in order to get first insights in the forming behaviour of laser welded and cross wedge rolled parts. The investigated material combination is C22 (1.0402) and 20MnCr5 (1.7147). This innovative process chain enables the production of hybrid parts. To evaluate the developed process chain, the weld and the joining zone is analysed before and after cross wedge rolling. Main results are that the joining process using laser welding enables a strong bonding between the two materials with a higher hardness in the joining zone than for the individual materials. After the forming process, the bonding of the joining zone is still present, while the hardness decreased but remains higher than of the materials themselves.

tailored forming, laser welding, hybrid parts, cross wedge rolling

An essential component of belt conveyor systems are the support idlers. Particularly in bulk material handling systems, which are used in demanding terrain with numerous gradients as well as under extreme environmental conditions in tropical and arctic regions, they are exposed to considerable stress. The steadily growing flow rates mean higher loads and speeds for the support idlers. This trend is countered by new drive concepts. For example, belt-driven conveyor systems with internally installed motors are used.

Within a research project, the IPH is developing a dual measuring system that can be used to test both conventional bearing rollers and driven bearing rollers.

driven idlers, test rig, efficiency of conveying systems

The measurement of torque via sensors as well as the generation of torque form the basis of many industrial sectors. Within a research project an optical and non-contact measurement method to detect the absolute rotation angle and torque was developed. For comparison with the current state of the art torque sensors a test stand was built and compared to a reference torque sensor. The results of this validation are presented in the present paper.

torque, rotation angle, optical, validation