In order to reduce CO2 emissions, it is necessary to know the emissions of operational processes. The Institut für Integrierte Produktion Hannover gGmbH has developed a software demonstrator which shows ecological-logistic cause-effect relationships. Internal and logistical processes can be investigated with regard to CO2 emissions, costs and process duration. Comparisons of different alternatives illustrate differences and show savings potentials of CO2.

ecology, logistics, CO2

Demographic change and the associated population growth in large cities make it increasingly difficult to create affordable housing. There is also a lack of available building land for potential new buildings. One approach to alleviate the housing shortage in large cities is modular building post-compaction. In this context, prevailing framework conditions are characterized by limited available space, a complex infrastructure or the consideration of the burden on residents. The lack of description models for associated construction sites, as well as for the organisation and control of necessary processes, still stand in the way of their widespread use. This refers in particular to the interactions of the parameters mentioned and their effect on the logistic performance of such a construction site. This article therefore describes a method for the organization and control of construction site processes in the modular building post-compaction with the aim to be able to plan and carry out such con-struction projects efficiently and with little effort. The users shall be provided with a process description of the planning of construction site equipment and process flow, as well as with a decision support in case of disturbances of the process in the operative operation.

urbanization, demographic change, construction sites, production planning and control

Within the Collaborative Research Centre (CRC) 1153 “Tailored Forming “the manufacturing of hybrid bulk components is investigated. Therefore, a process chain consisting of joining, forming, milling and quality control has been established by multiple subprojects.Within subproject B1 of the CRC forming of hybrid parts by the incrementally forming cross-wedge rolling (CWR) process is investigated. The superior aim is to determine process limits and capabilities, when forming parts consisting of different materials joined by varying technologies.

In this paper, the investigation of cross-wedge rolling of serially arranged hybrid parts made of steel and aluminum is described. The focus of the research presented in this publication is the displacement of the joining zone of hybrid parts due to the cross-wedge rolling process. Therefore, finite element simulations have been developed, that allow the investigations of hybrid solid components. After simulation of various variations of the cross-wedge rolling process, i.e.  differently shaped tools and forming velocities, experimental trials were carried out with identical parameter sets. A comparison of simulation and experiment, showed that the simulation model is capable of describing the cross-wedge rolling process of hybrid parts. The standard deviation of the displacement of the joining zone between simulation and experimental trials is 8.8% with regard to all investigated cases.

tailored forming, cross-wedge rolling, material forming, aluminum, steel

Within the Collaborative Research Centre 1153 “Tailored Forming“ a process chain for the manufacturing of hybrid high performance components is developed. Exemplary process steps consist of deposit welding of high performance steel on low-cost steel, pre-shaping by cross-wedge rolling and finishing by milling.
Hard material coatings such as Stellite 6 or Delcrome 253 are used as wear or corrosion protection coatings in industrial applications. Scientists of the Institute of Material Science welded these hard material alloys onto a base material, in this case C22.8, to create a hybrid workpiece. Scientists of the Institut für Integrierte Produktion Hannover have shown that these hybrid workpieces can be formed without defects (e.g. detachment of the coating) by cross-wedge rolling. After forming, the properties of the coatings are retained or in some cases even improved (e.g. the transition zone between base material and coating). By adjustments in the welding process, it was possible to apply the 100Cr6 rolling bearing steel, as of now declared as non-weldable, on the low-cost steel C22.8. 100Cr6 was formed afterwards in its hybrid bonding state with C22.8 by cross-wedge rolling, thus a component-integrated bearing seat was produced. Even after welding and forming, the rolling bearing steel coating could still be quench-hardened to a hardness of over 60 HRC. This paper shows the potential of forming hybrid billets to tailored parts. Since industrially available standard materials can be used for hard material coatings by this approach, even though they are not weldable by conventional methods, it is not necessary to use expensive, for welding designed materials to implement a hybrid component concept.

tailored forming, cross-wedge rolling, hard material coatings, PTA

Within the Collaborative Research Centre (CRC) 1153 Tailored Forming a process chain for the manufacturing of hybrid high performance components is developed. Exemplary process steps consist of deposit welding of high-performance steel onto low cost steel and pre-shaping the component by cross-wedge rolling (CWR), supported by an optical quality control system. A combination of a fringe projection profilometry setup with a thermal imaging camera is used to monitor the components before and after the CWR process. Both geometry and thermal imaging data are combined, assigning temperature values to 3D data points.
In this paper, the acquisition of combined temperature-geometry data is described. The data before and after the CWR is compared to the input and the result data of the forming simulation that was used to design the CWR process. The comparison shows the quality and sustainability of the heating process as well as the influence of the transportation of the hot component prior to forming. Additionally, the accuracy of the used simulation model and software are evaluated by data examination. The examination shows the limits of idealised and simplified assumptions for the simulation, e.g., a homogeneous temperature distribution before forming or the modelling of the heat transfer on contact surfaces.

tailored forming, cross-wedge rolling, material forming, aluminum, steel, optical measurement

The Institute for Integrated Production Hannover develops process technologies for the simultaneous forming and joining of dissimilar materials. In the future, they should enable, for example, sheet-metal solid parts and steel-aluminum connections. This expands the possibilities for cost-efficient multi-material construction methods in the automobile.

forging, hybrid, progressive compound

In current approaches to factory planning, the influences of transport systems are not taken into account in the layout planning process. Means of transport selection and transportation network planning takes place downstream of layout planning. The effects of transport system selection on the design of the factory layout are therefore only considered at the end of the factory planning process. The selection of certain transportation systems can therefore require extensive adjustments to the layout. This article describes a concept for an expert system that integrates transportation network planning into the layout planning process in addition to transportation system selection. The expert system should interpret the expert knowledge for the selection of transport systems on the basis of fuzzy logic and generate the later factory layout, as well as the transport networks, automatically on the basis of defined input data.

factory planning, layout planning, transport systems, fuzzy logic

Additive manufacturing - also known as 3D printing - includes manufacturing processes in which a component is usually built up layer by layer. This article describes the opportunities, hurdles and the current state of development of additive manufacturing.

additive manufacturing, 3D printing

Tool wear is of great economic relevance for forging companies. In addition to the maintenance costs, wear-related rejects are also produced. In the course of the research project “Processes for lot sizing planning in consideration of abrasion”, a method was developed for the determination of component-specific cost functions depending on the tool wear. The method allows the determination of a lot size, that leads to a most cost saving production.

lot sizing planning, tool wear, method, software demonstrator, forging tools

By using digital tools in the factory planning process, the planning quality can be improved and the duration of the project can be shortened. In order to exploit these potentials, data consistency must be guaranteed throughout the planning process. In this article, digital factory planning tools, used at the Institut für Integrierte Produktion Hannover (IPH), will be presented and their applications and requirements will be discussed.

digital factory planning, factory planning process, data consistency, digital tools

Multi-stage process chains are often used for the efficient production of complex geometries. These consist of a homogeneous heating, one or more preform stages and the final forging step. Via inhomogeneously heated blanks, the process chains are to be simplified or shortened. This is to be achieved by setting several, clearly defined temperature fields in which different yield stresses are present. These can influence the material flow, leading to an easier production of complex parts.

inhomogeneous heating, bulk forming, preforming processes

By automating process steps, additive manufacturing can be integrated into industrial value chains. The Institut für Integrierte Produktion Hannover (IPH) gGmbH has been designing a process chain linking 3d printers and mounting stations automatically.

additive manufacturing, 3D printing

The selection of a storage commissioning and transport system in times of industry 4.0 often takes place based on the automation that these systems bring with them. It is difficult to assert the actual level of automation from these systems. This paper presents general approaches for the determination of automation. After it will give a presentation of the developed method to identify the level of automation from systems.

level of automation, storage, commissioning and transport systems, storage planning, logistics

Bulk-formed components are used in many applications in automotive and plant engineering. The conditions under which the components are manufactured, often at more than 800°C and thousands of tons of forming force, lead to high die wear. One way to reduce wear is to use suitable protective coatings. Initial basic investigations showed that the use of hard Diamond-like Carbon (DLC) wear-resistant coatings can significantly reduce the tribological effects on the die surface. With new methods such as the use of multilayer layer coatings and temperature measurement on the die surface by use of thin layer sensors, the potential of wear protection for semi-hot massive forming is to be investigated and expanded.

DLC, hot forging, wear

Drones are often used in outdoor areas. Though drone are able to do more, e.g. to measure and digitalize the indoor layout structure of production environments. Further more it is possible to plan the production structure directly in the digital model with image processing algorithms. The combination of both step allows a faster and more efficient production planning process. 

drone, layoutscan, production planning, digitalization

The melt level and oxide layer quantity in an aluminum melting furnace cannot be monitored by contact sensors, since the melting bath is not accessible due to the high holding temperature (above 600°C). Therefore, the method of monitoring the melting bath by means of optical sensors is investigated for the first time. For this purpose, suitable optical measuring systems can be applied which will be able to record the melting bath. The height change of the melt is to be elaborated by means of image analysis and any oxide layer on the bath surface is to be detected.

aluminum melting furnace, metling bath monitoring, oxide layer

Abstract: For factory planning projects the layout capturing and layout processing process need a huge amount of effort, because they are typically done by hand. These processes could be accelerated and optimized by using a drone and automated analysis algorithms. Furthermore, this article shows a way to raise the digitization level for industrial processes. The key aspect lies on the usage of a drone in indoor environment and the processing of three-dimensional point cloud models for factory planning processes.

drone, factory planning, 3D-factory layout, object recognition

For the establishment of innovative manufacturing processes, consistent results and increased tool life is very important. When using slider tools in multidirectional forging processes, tool life identification has not been occurred yet. For the industrial implementation of slider tools, the influence of different process parameters on the resulting tool life is to be determined and a construction guideline for tool life increasement is created.

multi-directional forging, tool life optimization, design guidelines, toolmaking

The CO2 emissions of the logistics sector and the resulting environmental impact are continuously increasing. Rising costs for energy and resources, increased sensitivity of customers, changed legal bases and the impending climatic change force producing enterprises to ecologically-oriented rethink. The lack of knowledge about interdependencies, quantitative effects of actions and parameter characteristics prevents SMEs from the implementation. A holistic ecological-logistical impact model with software implementation can support SMEs reaching their potential. Requirements for the model and fundamental relationships between logistic parameters and ecological target values are presented in this publication.

SME, logistic, ecology

Since 2015 the Mittelstand 4.0 Centre of Excellence "Mit uns digital!" informs SMEs in Lower Saxony and Bremen about the opportunities and challenges of digitalisation. Now the funding from the Federal Ministry of Economic Affairs was renewed.

digitalization, industry 4.0, SMEs

Your contact person