Dr.-Ing. Malte Stonis

Doctoral thesis

Defects like folds can arise using forging for the production of long flat pieces made of aluminium. A special defect is the formation of inner folds. These can be seen in the grain flow. Inner folds have a negative effect on the dynamic properties of the forged part. As a production process, forging can be divided into single-directional and multi-directional forging. The formation of inner folds was observed at the single-directional forging. By using the multi-directional forging, a forming operation working from different directions, the forming can be set variably. Thus the development of folds can be prevented. A newly developed method can help in the selection of the forming process and in determining an appropriate tool geometry. Here especially the area is adapted, where the development of inner folds occur. Therefore a calculation model was developed. It integrates a computer-aided identification of the inner folds. Using this model, a correction of the parametrically constructed forging tool is possible.

multidirectional-forging, long flat pieces, aluminium, fibre orientation

Publications

Warm forged components have better surface properties and higher dimensional accuracy than hot forged components. Diamond-like-carbon (DLC) coatings can be used as wear protection coatings, which are anti-adhesive and extremely hard (up to 3500 HV), to increase tool service life. In the first funding period of the research project at the IPH – Institut für Integrierte Produktion Hannover gGmbH and the Institute for Surface Technology (IOT) of the Technical University of Braunschweig in cooperation with the Fraunhofer Institute for Surface Engineering and Thin Films (IST), the influence of different coating types and process temperatures on tool wear was investigated. The result is, that DLC coatings can reduce tool wear in some cases significantly, but that their service life is strongly dependent on the temperature. Coating-integrated temperature measurement could not be realised at that point, due to adhesion challenges. During the second funding period, the effect of multilayer DLC coatings on tool wear was investigated. Also, an additional method of the temperature measurement on the engraving surface using thin film sensors was developed in order to correlate the local process temperature and local layer wear. In this work, the development of and the results gathered by the thin film temperature sensors are presented, which enable for more accurate temperature measurements than commonly used thermocouples. Their functionality and durability under high loads were investigated and showed to be promising.

DLC2, warm forging, forging, wear, forming

To be able to meet the challenges of globalization, the optimization of internal transport is becoming increasingly important. Due to the further development, drones are an innovative material handling technology. The use of drones can be cost-efficient, especially for time-critical transport tasks. However, drones are characterized by a very low payload and very high operating costs. Therefore drones are in some cases more economical than conventional means of transport, but they do not offer an universal solution for all internal transport tasks.

drones, intralogistics, transport, transport systems, economic efficiency

Forging can be used to produce components with excellent mechanical properties. However, conventional drop forging does not offer the possibility of introducing undercuts into a workpiece and creating complex geometries with one forging stroke.

forging, undercuts

Solid formed components are subject to ever higher load requirements while at the same time striving for resource efficiency.
ciency at the same time. An ultrafine-grained microstructure can improve the strength and ductility of the component. This makes it possible to design smaller and lighter components and to exploit lightweight construction potential. One possibility
process for producing an ultrafine-grained microstructure is cross wedge rolling.

 

Cross wedge rolling, Fine-grained structure, Lightweight construction

Automated guided vehicles are a crucial component for more efficient production systems in intralogistics, but they have weaknesses in human-machine interaction. Scientists at IPH are developing a gesture-based control system to make the interaction intuitive and increase its acceptance.

Driverless transport vehicles, guidance control, gesture-based control

The service life of rolling contacts is dependent on many factors. The choice of materials in particular has a major influence on when, for example, a ball bearing mayfail.Within an exemplary process chain for the production of hybrid high-performance components through tailored forming, hybrid solid components made of at least two different steel alloys are investigated. The aim is to create parts that have improved properties compared to monolithic parts of the same geometry. In orderto achievethis, several materials are joined prior to a forming operation. In this work, hybrid shafts created by either plasma(PTA)orlaser metal deposition (LMD-W) welding are formed via cross-wedge rolling(CWR)to investigate the resulting thickness of the material deposited in the area of the bearing seat. Additionally,finite element analysis (FEA)simulations of the CWRprocessare compared with experimental CWR results to validate the coating thickness estimation done via simulation. This allows for more accurate predictionsofthe cladding materialgeometry after CWR,and the desired welding seam geometrycan be selected by calculating the cladding thicknessvia CWR simulation.

Cross-Wedge Rolling, Forming, hybrid, tailored forming

In a research project at the Institute for Integrated Production in Hanover, the process parameters for cross-wedge rolling are to be determined with which an ultrafine microstructure can be achieved in cylindrical blanks. The aim is to achieve grain sizes of the rolled part in the range of 500 nm.

Process development, cross wedge rolling, material properties,Ultra fine microstructure

This paper presents concepts for shock and vibration reduction of a forging tongs. In the forging industry, hand-operated forging tongs are often used for the machining of forged parts. Here, the employees are exposed to high loads from shocks and vibrations of the forming machines. A simulation model that has been created evaluates concepts for reducing the shocks and vibrations during forging

Ergonomics, forging, shock and vibration reduction

In many companies, the demands placed on in-house processes is increasing in order to get the maximum benefit from available capacities. This includes, among other things, avoiding waste of internal capacity. With the optimization of route sheets by adapting the level of detail to the needs of production, a significant contribution can already be made during work preparation. Improving in the provision of information can have a positive impact on the efficiency of a company by reducing non-value-adding activities.

route sheets, work preparation, level of detail, provision of information, MES-implementation

To manufacture semi-finished hybrid workpieces with tailored properties, a finite element simulation assisted process chain design was investigated. This includes the process steps of cross wedge rolling, hot geometry inspection, induction hardening, and fatigue testing. The process chain allows the utilisation of material combinations such as high-strength steels with low-cost and easy to process steels. Here, plasma transferred arc welding is applied to supply the process chain with hybrid specimen featuring different steel grades. An overview of the numerical approaches to consider the various physical phenomena in each of the process steps is presented. The properties of the component behaviour were investigated via the finite element method (FEM) and theoretical approaches.

Cross-Wedge Rolling, Forming, hybrid, tailored forming

For the industrial establishment of multi-directional forging processes, expected tool life and economical production are essential. In this paper, the influence of different process parameters on the wear behavior of slider tools is investigated within a simulation study. The results make it possible to identify the wear-inducing process parameters and to optimize a process design in relation to the resulting tool life.

wear, slider tools, forging processes

In this work we present an application of the virtual element method (VEM) to a forming process of hybrid metallic structures by cross-wedge rolling. The modeling of that process is embedded in a thermomechanical framework undergoing large deformations. Since forming processes include mostly huge displacements within a plastic regime, the difficulty of an accurate numerical treatment arises. VEM illustrates a stable, robust and quadratic convergence rate under extreme loading conditions in many fields of numerical mechanics. Numerically, the forming process is achieved by assigning time-dependent boundary conditions instead of modeling the contact mechanics yielding to a simplified formulation. Based on the two metallic combinations of steel and aluminum, different material properties are considered in the simulations. The purpose of this contribution is to illustrate the effectiveness of such a non-contact macroscopic framework by employing suitable boundary conditions within a virtual element scheme. A comparison with the classical finite element method (FEM) is performed to demonstrate the efficiency of the chosen approach. The numerical examples proposed in this work stem out from the DFG Collaborative Research Centre (CRC) 1153 “Process chain for the production of hybrid high-performance components through tailored forming”.

simulation, FEM, bulk metal forming, tailiored forming

Hybrid compound forging of aluminum bulk parts and steel sheet metals is a combination of material lightweight design and structural lightweight design. During this process, an aluminum bulk part and a steel sheet metal are combined and formed simultaneously. A material joint is generated by deforming, using zinc as solder material. This prevents the generation of brittle intermetallic Fe-Al-Phases as well as contact corrosion. The zinc layer is applied to the aluminum bulk part by hot dipping. To create a material locking connection by forming, suitable parameters such as the forming temperature are identified in first experimental trials. Microsections showed that the zinc layer is still intact after forming. In this paper the investigation of the effects of different steps of forming and different geometries of the aluminum bulk part surface on the joint strength are described. The forming tests show that a further forming of the aluminum part, resulting in a bigger deformation, leads to a stronger connection between both joining partners. But there is a limit to the forming since the applied forces can transfer to the steel sheet leading to an unintended deformation. The generated hybrid parts are tested for their ability for further forming. Therefore, the joined hybrid parts are undertaken a deep drawing process to see if the joint withstands further forming of the hybrid part.

aluminium, hybrid forging, lightweight construction, hybrid

Development of a methodologically procedure to enable companies to trade their free or required capacities by using a digital platform. The cross-sectoral digitalization of the economy not only leads to the creation of innovative products and services, but also to a change in existing market logics. Digital platforms are increasingly being regarded as growth and innovation drivers of digital change [2]. By linking the sharing economy in form of capacity sharing with digital platforms, companies can sell or purchase their free or required capacities across companies and thus counteract negative consequences of under- or overloading (such as short-time work or overtime).

capacity sharing

Handling hot steel parts weighing several kilos is physically demanding. A new type of forging tongs is designed to reduce stress at work, prevent pain and reduce sick leave.                             

forging, ergonomic, stress reduction

The selection of storage, commissioning and transport systems (sct systems) is very complex due to the large number of available systems on the market and influencing factors. One important influencing factor is automation. To classify the degrees of automation of sct systems and to determine the individually required automation a method is proposed below.

automation, storage, commissioning and transport systems

Upfront investment costs for the tooling of injection molds are the basis for deciding if a mold is tooled and hence if a part is viable for mass-production. If tooling costs are too high, a product may not viable for production. If tooling costs are estimated too low by the tool shop, contract implications may arise.
The goal of this research is to develop a method with humanlike quotation accuracy, achieve standardization, factor in historic quotation data and shorten quotation process times. The machine learning approach developed is based on geometry data of parts and additional meta-information.

injection molding, tooling, industry 4.0

The aim of subproject B1 of the Collaborative Research Center (CRC) 1153 is to determine the formability of novel hybrid semi-finished products by means of incremental forming cross wedge rolling. Main aspect is the forming of hybrid semi-finished products made of steel, aluminium and hard material alloys. In order to reduce the component weight, the use of hybrid semi-finished products makes it possible to manufacture less stressed segments of a previously monolithic component from a light metal. To increase wear resistance, a component area (e.g. a bearing seat) can be coated with a hard material. In addition, process variables (e.g. temperature and force) are to be measured in contact between work piece and tool in the future. There are primarily two material arrangements for the semi-finished products used: coated (coaxial - demonstrator shaft 1) and joined at the front (serial - demonstrator shaft 3). One challenge is the heating of the semi-finished products necessary for forming, since the hybrid semi-finished product has different flow resistances due to the different materials and may have to be heated inhomogeneously in order to enable uniform forming.

cross-wedge rolling, forming, hybrid work pieces, tailored forming, hybrid semi-finished products

Quality assurance methods are a central success factor for the further industrialization of additive manufacturing. This paper presents an approach for an optical inspection system that controls the quality of additive material extrusion layer by layer. The inspection task gets analyzed, hardware components for data acquisition are designed and a first step towards texture-analytical detection of defects is presented.

additive manufacturing, 3d printing, material extrusion, fused deposition modeling, image processing

To this day, the design of preforms for hot forging processes is still a manual trial and error process and therefore time consuming. Furthermore, its quality vastly depends on the engineer’s experience. At the same time, the preform is the most influencing stage for the final forging result. To overcome the dependency on the engineer’s experience and time-consuming optimization processes this paper presents and evaluates a preform optimization by an algorithm for cross wedge rolled preforms. This algorithm takes the mass distribution of the final part, the preform volume, the shape complexity, the appearance of folds in the final part and the occurring amount of flash into account. This forms a multi-criteria optimization problem resulting in large search spaces. Therefore, an evolutionary algorithm is introduced. The developed algorithm is tested with the help of a connecting rod to estimate the influence of the algorithm parameters. It is found that the developed algorithm is capable of creating a suitable preform for the given criteria in less than a minute. Furthermore, two of the five given algorithm parameters, the selection pressure und the population size, have significant influence on the optimization duration and quality.

preform optimization, genetic algorithm, cross wedge rolled, adaptive flash