Defects like folds can arise using forging for the production of long flat pieces made of aluminium. A special defect is the formation of inner folds. These can be seen in the grain flow. Inner folds have a negative effect on the dynamic properties of the forged part. As a production process, forging can be divided into single-directional and multi-directional forging. The formation of inner folds was observed at the single-directional forging. By using the multi-directional forging, a forming operation working from different directions, the forming can be set variably. Thus the development of folds can be prevented. A newly developed method can help in the selection of the forming process and in determining an appropriate tool geometry. Here especially the area is adapted, where the development of inner folds occur. Therefore a calculation model was developed. It integrates a computer-aided identification of the inner folds. Using this model, a correction of the parametrically constructed forging tool is possible.
multidirectional-forging, long flat pieces, aluminium, fibre orientation
In manual solid forming, hand-guided forging tongs are used when processing forged parts. During the forging process, employees are physically stressed by high forging part weights and transmitted impacts. This physical stress leads to employee health limitations and increases absenteeism rates. Ergonomic forging tongs have been developed at IPH that lead to a relief of the forging employees.
ergonomics, forging tongs, forming technology, prevention
Factory planning can increase the productivity of manufacturing significantly, though the process is expensive when it comes to cost and time. In this paper, we propose an Unmanned Aerial Vehicle (UAV) framework that accelerates this process and decreases the costs. The framework consists of a UAV that is equipped with an IMU, a camera and a LiDAR sensor in order to navigate and explore unknown indoor environments. Thus, it is independent of GNSS and solely uses on-board sensors. The acquired data should enable a DRL agent to perform autonomous decision making, applying a reinforcement learning approach. We propose a simulation of this framework including several training and testing environments, that should be used for developing a DRL agent.
drone, UAS, deep reinforcement learning
In this paper, objective functions for the optimisation of modular conveyor systems will be introduced. Modular conveyor systems consist of conventional as well as modular conveyor hardware, which are arranged in form of matrix-like layouts. The aim of an ongoing research project is to provide small and medium-sized enterprises with a user-friendly decision support for the selection and planning of modular conveyor systems. For this purpose, the conveyor systems should be evaluated according to the objectives throughput and space requirement. Therefore, mathematical equations have been developed, which enable a fast and precise evaluation of layouts. The paper focuses mainly on the efficient calculation of the throughput. The result quality of the evaluation equations regarding the throughput was proven by a simulation of example systems.
modular conveyor, conveyor system evaluation, throughput analysis, layout optimisation, logistics
A volatile, non-transparent market environment leads to fluctuations in the load on production capacities in the manufacturing sector, which are reflected within production in the over- or underutilization of machines and persons. Small and midsized enterprises (SMEs) are expecting increasing volatility, which is accompanied by an increase in the frequency of market and economic cycles. For SMEs it is difficult to cope with these fluctuations. Capacity sharing platforms can be a solution for this challenge. Platforms are available in different forms, but not used by companies often, because of prevailing scepticism in different fields. Therefore, a methodology will be developed to provide a decision support for or against platform usage. Additionally, the platform type choice will be supported, and the changes of logistic and economic indicators will be considered. With this information companies can make a qualitative decision, and the existing inhibitions can be alleviated.
capacity sharing, decision support, supplier and consumer view, logistic and economic indicators
The results of the wear investigations will allow multidirectional processes in hot forging to be optimized in the future in a low-wear and economical manner. The determined, wear-inducing process parameters within the design guideline represent elementary basic knowledge which can be applied in a process-specific manner. In principle, the economic potential of multi-directional forging processes using of multi-directional forging processes using sliding dies depends on the application and the desired component geometries. Multi-directional forging processes forging processes offer great potential for savings and can be process design using the results obtained, they can achieve high tool life and have a positive influence on the competitive situation of companies. As a result costs for explicitly selected niche components with significantly higher with significantly increased complexity can be reduced in the future with manageable investment costs in the future. In addition to the process-specific optimization of the process parameters, in the future options for mold design adaptation with regard to local cooling or local cooling or thermal insulation of the slide-wedge wedge mechanics, in order to be able to use the systems in automated series automated series production.
Slide tools, process design, economic efficiency, solid forming
The internal supply chain in companies includes all areas from procurement to shipping. It is characterised by a heterogeneous process landscape, often accompanied by repetitive, administrative tasks. These are usually associated with a high level of manual effort and a high potential for errors. An example of this is the manual entry of delivery notes into an enterprise resource planning (ERP) system. Even incremental improvements already help SMEs enormously to cope with the heterogeneity of processes in the internal supply chain. Robotic Process Automation (RPA) is a promising approach to this. RPA offers the potential to automate administrative processes in internal supply chain that previously did not seem automatable.
Logistik, innerbetriebliche Lieferkette, robotic process automation, RPA
Progress is urgently needed in the energy transition - but there are always acceptance problems and lawsuits with renewable energies. In the project "WindGISKI", a geoinformation system based on artificial intelligence is to be developed, which addresses these issues. In a preliminary project, influencing factors within the area of conflict between species, environmental and climate protection have already been identified. An interdisciplinary team from science and industry is now taking the next step with the development of artificial intelligence.
wind energy, area selection, artificial intelligence
Additive manufacturing allows components to be manufactured flexibly. This manufacturing process is particularly suitable for products with a unique character. In the production of large components, which have previously been manufactured by casting, this offers the advantages of greater flexibility in design and the elimination of the need to build molds that are only used once for unique items. To manufacture large components additively, a consortium of five companies is developing a new 3D printer for XXL products. For quality assurance, IPH - Institut für Integrierte Produktion Hannover has implemented two monitoring systems. These capture the geometry using three laser line scanners and regulate the manufacturing process during printing using two different software systems.
XXL products, large components, additive manufacturing, 3D printing, quality control
Tailored forming is used to produce hybrid components in which the materials used are locally adapted to the diferent types of physical, chemical and tribological requirements. In this paper, a Tailored Forming process chain for the production of a hybrid shaft with a bearing seat is investigated. The process chain consists of the manufacturing steps laser hot-wire cladding, cross-wedge rolling, turning and deep rolling. A cylindrical bar made of mild steel C22.8 is used as the base material, and a cladding of the martensitic valve steel X45CrSi9-3 is applied in the area of the bearing seat to achieve the strength and hardness required. It is investigated how the surface and subsurface properties of the hybrid component, such as hardness, microstructure and residual stress state, change within the process chain. The results are compared with a previous study in which the austenitic stainless steel X2CrNiMo19-12 was investigated as a cladding material. It is shown that the residual stress state after hot forming depends on the thermal expansion coefcients of the cladding material.
Tailored forming, Residual stress, Laser hot-wire cladding, Deep rolling, Hybrid Components
Laser transmission welding (LTW) is a known technique to join conventionally produced high volume thermoplastic parts, e.g. injected molded parts for the automotive sector. For using LTW for additively manufactured parts (usually prototypes, small series, or one-off products), this technique has to be evolved to overcome the difficulties in the part composition resulted in the additive manufacturing process itself. In comparison to the injection molding process, the additive manufacturing process leads to an inhomogeneous structure with trapped air inside the volume. Therefore, a change in the transmissivity results due to the additive manufacturing process.
In this paper, a method is presented to enhance the weld seam quality of laser welded additively manufactured parts assisted by a neural network-based expert system. The designed expert system supports the user setting up the additive manufacturing process. With the results of a preliminary work, a neural network is trained to predict the transmissivity values of the transparent samples. To validate the expert system, specimen of transparent polylactide are additively manufactured with various manufacturing parameters in order to change the transmissivity. The transmissivity of the parts are measured with a spectroscope. The parameters of the additive manufacturing process are used to predict the transmissivity with the neural network and are compared to the measurements. The transparent samples are welded to black polylactide samples with different laser power in overlap configuration and shear tensile tests are performed. With these experiments, the prediction of additive manufacturing parameters with the expert system in order to use the parts for a LTW process is demonstrated.
Additive manufacturing, laser transmission welding, neural networks, expert system
The reorganization of factory objects in the restructuring of existing factories is associated with numerous challenges. This article provides an overview of possible conflicting goals and key factors influencing the success of the project.
Factories are subject to continuous change. Ever shorter development cycles in the manufacture of different products lead to an increased need for restructuring of affected manufacturing structures. In the context of factory planning projects, the focus is on the design of the layout under the influence of individual framework conditions. The relocation steps necessary for realization are usually determined only after the layout design has been completed. However, the planning and preparation of the relocation represents an independent project task with regard to the objectives and complexity. Within the scope of the research project on the "Development of a Method for the Optimal Planning of the Relocation of Factory Objects in the Course of the Realization of a New Factory Layout" (OptiFaU), fundamental interrelationships in the planning and execution of factory relocations are investigated and discussed with regard to their significance for the success of the project. The aim of the project is to provide planning persons (e.g. relocation service providers or factory planners) with a possibility to evaluate relocation alternatives.
relocation planning, project planning, scheduling, factory planning, reorganization
For more than half of the approximately 30,000 wind turbines in Germany, the 20-year EEG funding will end in the next ten years. It is still unclear what the optimal technical and economic strategies for end-oflife utilization might look like. The BMWK joint project „TransWind“ aims to analyze the end-of-life issue on a micro- and macro-level in a transdisciplinary manner to support stakeholders from politics, the wind industry, and the resource and recycling sector in the selection of end-of-life strategies.
wind turbines, end-of-life, ecology, dismantling, repowering, disassembly, recycling, XXL products
The Tailored Forming process chain is used to manufacture hybrid components and consists of a joining process or Additive
Manufacturing for various materials (e.g. deposition welding), subsequent hot forming, machining and heat treatment. In
this way, components can be produced with materials adapted to the load case. For this paper, hybrid shafts are produced by
deposition welding of a cladding made of X45CrSi9-3 onto a workpiece made from 20MnCr5. The hybrid shafts are then
formed by means of cross-wedge rolling. It is investigated, how the thickness of the cladding and the type of cooling after
hot forming (in air or in water) afect the properties of the cladding. The hybrid shafts are formed without layer separation.
However, slight core loosening occurres in the area of the bearing seat due to the Mannesmann efect. The microhardness
of the cladding is only slightly efected by the cooling strategy, while the microhardness of the base material is signifcantly
higher in water cooled shafts. The microstructure of the cladding after both cooling strategies consists mainly of martensite.
In the base material, air cooling results in a mainly ferritic microstructure with grains of ferrite-pearlite. Quenching in water
results in a microstructure containing mainly martensite.
laser hot-wire cladding, cross-wedge rolling, hybrid components, cladding
How can companies get the most out of their manufacturing and be economically successful even in a high-wage location? A Manufacturing Execution System – a process-oriented level of a multi-layer production management system – can help. This enables companies to optimize their production planning and control.
A large number of small and medium-sized enterprises (SMEs) currently still do without this support because the effort required to introduce such a system appears too great. One way to reduce the effort involved is to prepare comprehensively for the MES introduction. An "MES Readiness Check" should provide support for this preparation. It reveals the demands that this introduction phase places on companies. The company can check whether it meets the necessary requirements.
Manufacturing Execution System, MES, Digitalization
This article presents a method for superimposing vision constraints based on the principle of augmented reality. The method is based on an overlay of the actual operator's field of view with information from a reconstructed scene. The reconstructed scene is superimposed as a hologram only over the vision-restricting components. The presented method is divided into position determination, data transmission and visualization. These software components are presented in detail. In view of the later use of the system in an industrial truck, the real-time capability of the data transmission, the accuracy of the visualization and the robustness of the position determination are also investigated.
augmented reality, driver assistance system, forklift trucks, image processing, obstacle detection
In the automotive and mechanical engineering industries, forged parts are used in many applications. The dies for the forged parts are subject to high wear during forging due to high forming forces and temperatures. In order to enable economical production operation, methods to reduce the wear in warm forging have been investigated. One promising method is the use of Diamondlike-Carbon (DLC) wear-resistant coatings.
Warm Forging, Coating, DLC, Wear
Storage planning is an important element of the factory planning and a significant competitive factor in times of an increasing global market. The selection of a suitable storage, commissioning and transport system (sct system) is a major challenge for companies, because of the increasing number of new sct systems with different features. The level of automation and versatility of these systems are intransparent and the required level of both for a certain company is unknown. To identify the level of versatility of sct systems a method based on versatility characteristics assigned to the versatility enablers was developed. To determine the required versatility of sct systems for a particular company, a catalogue of change drivers was created. For the level of automation of sct systems, the requirements resulting from product characteristics and performance requirements of the warehouse were identified. The performance of the sct systems depends on the automation level, which can be set by influencing factors such as the degree of digitalization. The required level of automation must be determined by restrictions of the company and the identified possibilities of the systems. At the same time, it is required to consider the costs of the systems as well as their possible combinations. Therefore, to save costs, the aim is also to consider systems which do not fit perfectly to the required versatility and automation level for a company but are still at an acceptable level.
storage, commissioning and transport systems, automation and versatility
Additive manufacturing has established itself in medical technology, where complex and patient-specific products are manufactured. Since additive manufacturing processes are sensitive to changes in process parameters and environmental conditions, quality assurance is a key factor for production. This paper presents the approach for in-situ process monitoring in additive material extrusion.
Additive Manufacturing, 3D printing, Fused Deposition Modeling, quality control, machine learning
Due to the increased integration of functions, many components have to meet high and sometimes contradictory requirements. One way to solve this problem is Tailored Forming. Here, hybrid semi-finished products are manufactured by a joining or cladding process, which are then hot-formed and finished. For the design of hybrid components for a possible later industrial application, knowledge about properties of hybrid components is required. In this paper it is investigated how the respective process steps of the Tailored Forming process chain change the surface and subsurface properties of the applied cladding layer. For this purpose, shafts made of unalloyed steel are provided with a high-alloy austenitic steel X2CrNiMo19-12 cladding by laser hot-wire cladding. Subsequently, hot forming is carried out by cross-wedge rolling and the finishing by turning and deep rolling. After each process step, the subsurface properties of the cladding such as microstructure, hardness and residual stress state are examined. Thus, the influence of different process steps on the subsurface properties in the process chain of manufacturing hybrid shafts can be analyzed. This knowledge is necessary for the specific adjustment of defined properties for a required application behavior.
Cross-Wedge Rolling, Tailored Forming, Hybrid
During the assembly of large-scale products, disruptions often occur. To reduce these disruptions, a straightforward approach to their systematic processing is needed. This should automatically identify similar disruptions and independently suggest sensible corrective measures. For this, the disruptions are first collected and characterized and a model for practical information flows is created. Then, in a multi-stage similarity search, similar disruptions are identified, and suitable corrective measures are derived.
Disruption management, single and small batch assembly, large scale products, similarity search