Der Sonderforschungsbereich 1153 erforscht eine innovative Prozesskette zur Herstellung von Hybridbauteilen. Die hybriden Werkstücke werden zunächst gefügt und anschließend durch Querkeilwalzen umgeformt. Um das Verhalten der Fügezone bei erhöhter Komplexität des Umformprozesses zu untersuchen, wurden Ritzelwellen hergestellt. Zu diesem Zweck wurden sechs Arten von Werkstücken, die mit drei Arten von Fügeverfahren hergestellt wurden, zu Ritzelwellen umgeformt. Das Referenzverfahren liefert eine Welle mit einem glatten Lagersitz. Es wurde festgestellt, dass die erhöhte Komplexität im Vergleich zu den Referenzprozessen keine Herausforderungen darstellte. Bei den Ritzeln aus Stahl wurde eine nahezu endkonturnahe Geometrie erreicht.
Hybridbauteile, Querkeilwalzen, Warmumformung, Laserstrahlschweißen, LHWD-Schweißen
Obwohl Fabrikplanung als Möglichkeit zur signifikanten Steigerung der Produktivität in der Fertigung weitgehend anerkannt ist, können die damit verbundenen Kosten in Bezug auf Zeit und Geld ein Hemmnis sein. In diesem Beitrag präsentieren wir eine Lösung für diese Herausforderung durch die Entwicklung eines Software-in-the-Loop (SITL) Frameworks, das ein automatisiertes unbemanntes Luftfahrtsystem (UAS). Das Framework beinhaltet simulierte Sensoren, ein UAS und eine virtuelle Fabrikumgebung. Darüber hinaus sellen wir einen Deep Reinforcement Learning (DRL) Agenten vor, der in der Lage ist, Kollisionen zu vermeiden und Explorationen mit dem Dueling Double Deep Q-Network (3DQN) mit priorisierter Erfahrungswiedergabe durchzuführen.
Künstliche Intelligenz, Bestärkendes Lernen, Unbemannte Luftfahrtsysteme
Es wird eine neue Prozesskette für die Herstellung von lastangepassten Hybridbauteilen vorgestellt. Die Prozesskette "Tailored Forming" besteht aus einem Auftragschweißprozess, der Warmumformung, der spanenden Bearbeitung und einer optionalen Wärmebehandlung. Im Mittelpunkt dieser Arbeit steht die Kombination des Laserstrahl-Warmdraht-Auftragschweißens mit anschließender Warmumformung zur Herstellung von Hybridbauteilen. Die Anwendbarkeit wird für verschiedene Werkstoffkombinationen und Bauteilgeometrien, z. B. eine Welle mit Lagersitz oder ein Kegelrad, untersucht. Als Plattierungswerkstoffe werden der austenitische Edelstahl AISI 316L und der martensitische Ventilstahl AISI HNV3 verwendet, als Grundwerkstoffe werden Baustahl AISI 1022M und Einsatzstahl AISI 5120 eingesetzt. Die resultierenden Bauteileigenschaften nach dem Laserwarmdraht-Auftragschweißen und der Warmumformung wie Härte, Gefüge und Eigenspannungszustand werden vorgestellt. Die Warmumformung bewirkt im Auftragschweißen und in der Wärmeeinflusszone eine Umwandlung von einem Schweißgefüge in ein feinkörniges Umformgefüge. Die Warmumformung beeinflusst den Eigenspannungszustand in der Umhüllung erheblich, wobei der resultierende Eigenspannungszustand von der Werkstoffkombination abhängt.
Laser-Heißdraht-Auftragschweißen, Auftragschweißen, Warmumformung, Eigenspannung, Tailored Forming
Geometrie, Design und Verarbeitung haben neben den thermoelektrischen Materialeigenschaften einen erheblichen Einfluss auf die Wirtschaftlichkeit und Leistung von thermoelektrischen Generatoren (TEG). Während herkömmliche BULK-TEGs aufwändig herzustellen sind und nur begrenzte Variationen der Geometrie zulassen, sind gedruckte TEGs aufgrund der Verwendung organischer Materialien oft in ihrer Anwendung und Verarbeitungstemperatur eingeschränkt. In dieser Arbeit wird ein Proof-of-Concept für die Herstellung von modularen, anpassbaren und temperaturstabilen TEGs durch die Anwendung eines alternativen Laserprozesses demonstriert. Zu diesem Zweck wurden bei niedriger Temperatur gebrannte Keramiksubstrate großflächig beschichtet, mit einem Laser frei strukturiert, ohne Masken geschnitten und in einem einzigen optimierten thermischen Nachbearbeitungsprozess zu einer festen Struktur gesintert. Zum Nachweis der Machbarkeit wurde ein skalierbares Design mit komplexer Geometrie und großer Kühloberfläche für den Einsatz auf einer heißen Welle realisiert.
Thermoelektrik, Gedruckte Elektronik, Laserstrukturierung, Gedruckte Keramik, Sprühbeschichtung
Die digitale Erschließung von Räumen innerhalb der Stadt Hannover mittels digitalem Abbild ermöglicht es, Nutzungsbedarfe dieser Räume bedarfsgerechter und effizienter zu decken. Die Erstellung eines digitalen Abbilds, welches neue Möglichkeiten für den Zugang zum öffentlichen Raum erschließt, erfordert den Einsatz verschiedener Sensorik wie beispielsweise LiDAR-Sensoren und Tracking-Kameras zur 3D-Vermessung. Zur Auswahl geeigneter und mittels Multikopter einsetzbarer Sensoren, werden zunächst Anforderungen an das Gesamtsystem definiert, welche in Funktionsanforderungen für die Sensorik abgeleitet werden. Anschließend wird der Erfüllungsgrad der Funktionsanforderungen durch die unterschiedlichen Sensoren zunächst simulativ und anschließend praktisch ermittelt.
5G, Multikopter, digitales Abbild
Die zeitlich und räumlich exakte Darstellung von Informationen in Augmented Reality (AR) Systemen ist entscheidend für die Immersion und die Betriebssicherheit beim Einsatz der Technologie. In dieser Veröffentlichung wird ein Assistenzsystem vorgestellt, das ein Head-Mounted Display (HMD) verwendet, um visuelle Einschränkungen auf Gabelstaplern zu verbergen. Zudem wird eine Methode zur Bewertung der Genauigkeit und Latenz von AR-Systemen basierend auf HMD vorgeschlagen. Um die Genauigkeit zu messen, werden die Abweichungen zwischen realen und virtuellen Markern bestimmt. Für die Latenzmessung wird die Frame-Differenz zwischen realen und virtuellen Ereignissen bestimmt. Die Ergebnisse der Messungen zeigen die Einflüsse verschiedener Systemparameter und -dynamiken auf die Latenz und Einblendungsgenauigkeit.
Augmented Reality, Bildverarbeitung, Assistenzsystem, Flurförderzeuge
Die Additive Fertigung ermöglicht die wirtschaftliche Herstellung komplexer Komponenten mit einem hohen Maß an Individualisierung. Daher nutzt die medizinische Industrie die Vorteile der Additiven Fertigung zur Herstellung individualisierter medizinischer Geräte. Medizinische Geräte unterliegen besonderen Anforderungen an die Qualitätskontrolle, welche die additiven Fertigungsverfahren noch nicht erfüllen. Dieser Artikel befasst sich mit der Einführung eines Konzepts zur in situ Prozessüberwachung am Beispiel des Fused Deposition Modeling. Die Prozessüberwachung erfolgt durch ein Qualitätsmodell, welches auf die Daten eines selbst entwickelten, im Drucker integrierten Sensorkonzeptes zugreift. Diese Daten werden mit Hilfe einer Machine-Learning-Pipeline analysiert, um die Prozess- und Produktqualität vorherzusagen. Die Machine-Learning-Pipeline besteht dabei aus mehreren aufeinander aufbauenden Schritten, die von der Datenextraktion und -vorverarbeitung bis zum Modelltraining und -einsatz reichen. Das vorgestellte Verfahren zur Sicherstellung der Druckqualität bildet eine Grundlage für die Produktion von sicherheitsrelevanten Bauteilen in Losgröße eins und erweitert herkömmliche Qualitätssicherungsmethoden in der Additiven Fertigung.
Additive Fertigung, Qualität, Fused Deposition Modeling, Künstliche Intelligenz, Prozessüberwachung
Die Planung von Fabriken kann die Produktivität der Produktion erheblich steigern, obwohl der Prozess sehr kosten- und zeitintensiv ist. In dieser Arbeit wird ein unbemanntes Luftfahrzeug (UAV) vorgestellt, das diesen Prozess beschleunigt und die Kosten senkt. Das System besteht aus einem UAV, das mit einer IMU, einer Kamera und einem LiDAR-Sensor ausgestattet ist, um unbekannte Innenräume zu navigieren und zu erkunden. Es ist also unabhängig von GNSS und nutzt ausschließlich die bordeigenen Sensoren. Die gewonnenen Daten sollen es einem DRL-Agenten ermöglichen automatisiert Entscheidungen zu treffen und dabei den Ansatz des Bestärkenden Lernens anzuwenden. In der Arbeit präsenteiren wir eine virtuelle Trainings- und Testumgebungen, die für das Anlernen eines DRL-Agenten verwendet werden soll.
Drohne, UAS, Bestärkendes Lernen
In diesem Beitrag werden Zielfunktionen für die Optimierung von modularen Fördersystemen vorgestellt. Modulare Fördersysteme bestehen sowohl aus konventioneller als auch aus modularer Fördertechnik, die in Form von matrixartigen Layouts angeordnet sind. Ziel eines laufenden Forschungsprojektes ist es, kleinen und mittleren Unternehmen eine benutzerfreundliche Entscheidungshilfe für die Auswahl und Planung von modularen Fördersystemen zu geben. Zu diesem Zweck sollen die Fördersysteme nach den Zielen Durchsatz und Platzbedarf bewertet werden. Dazu wurden mathematische Gleichungen entwickelt, die eine schnelle und präzise Bewertung von Layouts ermöglichen. Der Schwerpunkt der Arbeit liegt dabei auf der effizienten Berechnung des Durchsatzes. Die Ergebnisqualität der Bewertungsgleichungen hinsichtlich des Durchsatzes wurde durch eine Simulation von Beispielanlagen nachgewiesen.
Modular Fördertechnik, Fördersystembewertung, Durchsatzanalyse, Layoutoptimierung, Logistik
Tailored Forming dient der Herstellung von Hybridbauteilen, bei denen die verwendeten Werkstoffe lokal an die unterschiedlichen physikalischen, chemischen und tribologischen Anforderungen angepasst werden. In dieser Arbeit wird eine Tailored-Forming-Prozesskette für die Herstellung einer Hybridwelle mit Lagersitz untersucht. Die Prozesskette besteht aus den Fertigungsschritten Laserwarmdraht-Auftragschweißen, Querkantenwalzen, Drehen und Festwalzen. Als Grundwerkstoff wird ein zylindrischer Stab aus Baustahl C22.8 verwendet und im Bereich des Lagersitzes eine Plattierung aus dem martensitischen Ventilstahl X45CrSi9-3 aufgebracht, um die erforderliche Festigkeit und Härte zu erreichen. Es wird untersucht, wie sich die Oberflächen- und Untergrundeigenschaften des Hybridbauteils, wie Härte, Gefüge und Eigenspannungszustand, innerhalb der Prozesskette verändern. Die Ergebnisse werden mit einer früheren Studie verglichen, in der der austenitische rostfreie Stahl X2CrNiMo19-12 als Plattierungswerkstoff untersucht wurde. Es zeigt sich, dass der Eigenspannungszustand nach der Warmumformung von den Wärmeausdehnungskoeffizienten des Plattierungswerkstoffs abhängt.
Tailored Forming, Eigenspannung, Laserheißdrahtplattieren, Festwalzen, Hybridbauteile
Die Prozesskette Tailored Forming dient der Herstellung hybrider Bauteile und besteht aus einem Fügeprozess für verschiedene Werkstoffe (z. B. Auftragschweißen), anschließender Warmumformung, spanender Bearbeitung und Wärmebehandlung. Auf diese Weise können Bauteile mit an den Lastfall angepassten Werkstoffen hergestellt werden. In dieser Arbeit werden Hybridwellen durch Auftragschweißen einer Beschichtung aus X45CrSi9-3 auf ein Werkstück aus 20MnCr5 hergestellt. Die Hybridwellen werden dann durch Querkeilwalzen umgeformt. Es wird untersucht, wie sich die Dicke der Schicht und die Art der Abkühlung nach der Warmumformung (an Luft oder in Wasser) auf die Eigenschaften der Schicht auswirken. Die Hybridwellen werden ohne Schichtablösung umgeformt. Allerdings kommt es im Bereich des Lagersitzes durch den Mannesmann-Effekt zu leichten Kernauflockerungen. Die Mikrohärte der Auftragschicht wird durch die Kühlstrategie nur geringfügig beeinflusst, während die Mikrohärte des Grundmaterials bei wassergekühlten Wellen deutlich höher ist. Das Gefüge der Plattierung besteht nach beiden Abkühlstrategien hauptsächlich aus Martensit. Im Grundwerkstoff führt die Luftkühlung zu einem überwiegend ferritischen Gefüge mit Ferrit-Perlit-Körnern. Abschrecken in Wasser führt zu einem Gefüge, das hauptsächlich aus Martensit besteht.
Laser-Heißdraht-Auftragschweißen, Querkeilwalzen, Hybridbauteile, Auftragschweißen
In diesem Artikel wird ein Verfahren zur Überlagerung von Sichteinschränkungen, basierend auf dem Prinzip der Augmented Reality, vorgestellt. Das Verfahren beruht auf einer Überlagerung des tatsächlichen Bedienerblickfeldes mit Informationen aus einer rekonstruierten Szene. Die rekonstruierte Szene wird über den sichteinschränkenden Komponenten als Hologramm eingeblendet. Das vorgestellte Verfahren gliedert sich in die Komponenten Positionsbestimmung, Datenübertragung und Visualisierung. Diese Softwarekomponenten werden detailliert vorgestellt. Im Hinblick auf den späteren Einsatz des Systems in einem Flurförderzeug werden zudem die Echtzeitfähigkeit der Datenübertragung, die Genauigkeit der Visualisierung und die Robustheit der Positionsbestimmung untersucht.
Augmented Reality, Bildverarbeitung, Fahrerassistenzsystem, Flurförderzeuge, Hinderniserkennung
Die Herstellungstechnologie thermoelektrischer Materialien ist mühsam und teuer und umfasst oft komplexe und zeitintensive Vorbereitungsschritte. In dieser Arbeit wird ein Lasersinterverfahren für das oxidbasierte thermoelektrische Material Ca3Co4O9 untersucht. Es wurden Proben auf Basis von sprühbeschichtetem Ca3Co4O9 hergestellt und anschließend unter verschiedenen Laserparametern gesintert und hinsichtlich der Mikrostruktur und der thermoelektrischen Eigenschaften untersucht. Dabei erwies sich die Kombination von Lasersintern und anschließendem thermischen Sintern als ein vielversprechendes Konzept zur Herstellung thermoelektrischer Schichten. Das Lasersintern kann somit einen großen Beitrag zur Verbesserung der Verarbeitung thermoelektrischer Materialien leisten, insbesondere wenn Schichten eingesetzt werden, die nicht unter Druck gesintert werden können.
Thermoelektrik, Lasersintern
In der Medizintechnik, in der komplexe und patientenindividuelle Produkte hergestellt werden, hat sich die Additive Fertigung etabliert. Da die Prozesse der Additiven Fertigung sensibel auf Veränderungen der Prozessparameter und Umgebungsbedingungen reagieren, sind Qualitätssicherungsmaßnahmen ein zentraler Faktor innerhalb der Produktion. In diesem Beitrag wird der Ansatz für eine In-situ-Prozessüberwachung in der additiven Materialextrusion vorgestellt.
Additive Fertigung, 3D-Druck, Fused Deposition Modeling, Qualitätskontrolle, Machine-Learning
Um auch komplexe Prozesse wie das Fügen additiv gefertigter Bauteile mittels Laser in der Produktion qualitativ gesichert zu ermöglichen, ist das Vorhandensein von Fachwissen in Unternehmen zwingend notwendig. Um dieses Wissen zur Prozesssteuerung und -kontrolle personalunabhängig zu bündeln, wird im IGF-Forschungsprojekt der FQS – Forschungsgemeinschaft Qualität e.V. mit dem Titel „Qualitätssicherung beim Laserstrahlschweißen additiv gefertigter thermoplastischer Bauteile (QualLa)“ ein Expertensystem entwickelt. Durch die Integration von Fachwissen in das Expertensystem kann dieses Wissen langfristig in Unternehmen gesichert und Prozesse stets mit hohen qualitativen Standards durchgeführt werden.
Additive Fertigung, 3D Druck, FDM, Laserdurchstrahlschweißen, Laserstrahlschweißen
Qualitative Unsicherheiten sind eine zentrale Herausforderung für die weitere Industrialisierung der additiven Fertigung. Um diese Herausforderung zu lösen, sind Methoden zur Messung der Prozesszustände und Eigenschaften von Teilen während der additiven Fertigung unerlässlich. Das Thema dieser Übersichtsarbeit ist die In-situ-Prozessüberwachung für die additive Fertigung durch Materialextrusion. Ziel ist es, erstens die Forschungsaktivität zu diesem Thema zu quantifizieren, zweitens die eingesetzten Technologien zu analysieren und schließlich Forschungslücken zu identifizieren. Es wurden verschiedene Datenbanken systematisch nach relevanten Publikationen durchsucht und insgesamt 221 Publikationen detailliert analysiert. Die Studie zeigte, dass die Forschungsaktivität auf diesem Gebiet zunehmend an Bedeutung gewinnt. Es wurden zahlreiche Sensortechnologien und Analysealgorithmen identifiziert. Dennoch bestehen Forschungslücken bei Themen wie optimierte Überwachungssysteme für industrielle Materialextrusionsanlagen, Inspektionsmöglichkeiten für zusätzliche Qualitätsmerkmale und Standardisierungsaspekte. Diese Literaturübersicht ist die erste, die die Prozessüberwachung für die Materialextrusion in einem systematischen und umfassenden Ansatz behandelt.
Materialextrusion, Fused deposition modeling, Prozessüberwachung, Sensoren, Forschungslücken
Kleinskalige modulare Fördertechnik ermöglicht es, mehrere Förderaufgaben gleichzeitig und auf kleinstem Raum durchzuführen und bietet so ein großes Potenzial zur Flexibilisierung und Effizienzsteigerung von Förderanlagen. Aktuell existiert keine einfach anwendbare Methode, die Unternehmen dabei unterstützt, diese neuartige Fördertechnik auf Prozessebene unter Berücksichtigung logistischer und wirtschaftlicher Zielstellungen in konventionelle Fördersysteme zu integrieren. Daher wird in einem Forschungsprojekt derzeit eine Optimierungsmethode für Förderanlagenlayouts entwickelt, mit der Unternehmen die Potenziale der neuartigen Fördertechnik bewerten können.
Kleinskalige modulare Förderer, Fördersysteme, Maschinelles Lernen, Künstliche Intelligenz
Fabrikplanung ist für produzierende Unternehmen ein wichtiges Werkzeug, um die Effizienz zu steigern oder die Wettbewerbsfähigkeit zu erhalten. Eine besondere Herausforderung ist hierbei die Aufnahme von Fabriklayoutdaten und die Verarbeitung der Daten in Fabrikplanungstools. In der heutigen Zeit werden viel Layoutdaten noch händisch aufgenommen oder aus Laserscandaten händisch in Fabrikplanungstools übertragen. Dies führt zu einem hohen Arbeitsaufwand und ist fehleranfällig.
In dieser Arbeit wird ein ganzheitliches Konzept für eine automatisierte und systematische Datenaufnahme und Datenverarbeitung für den Fabrikplanungsprozess vorgestellt.
3D Fabrikplanung, automatisierter Drohnenflug, Punktwolkenverarbeitung, 3D Layoutscan
In diesem Artikel wird ein Verfahren zur automatischen Sichteinschränkungsdetektion und maskenbasierten, deckungsgleichen Sichteinschränkungskompensation, basierend auf dem Prinzip der erweiterten Realität, vorgestellt. Das Verfahren beruht auf einer Überlagerung eines simulierten Bedienerblickfeldes mit Informationen aus einer von zwei RGB-Kameras rekonstruierten Szene. Die Kameras werden derart angeordnet, dass sie die Szeneninformationen hinter der Sichteinschränkung aufnehmen können. Neben der Vorstellung des Versuchsaufbaus, findet eine detaillierte Vorstellung der Bildverarbeitungssoftware statt. Im Hinblick auf den späteren Einsatz des Systems in einem Flurförderzeug, wird zudem die Echtzeitfähigkeit untersucht und Optimierungsmöglichkeiten diskutiert.
Augmented Reality, Bildverarbeitung, Fahrerassistenzsysteme, Flurförderzeuge, Hinderniserkennung
Die Lebensdauer von Wälzkontakten ist von vielen Faktoren abhängig. Innerhalb einer beispielhaften Prozesskette zur Herstellung von hybriden Hochleistungsbauteilen durch Tailored Forming werden hybride Massivbauteile aus mindestens zwei verschiedenen Stahllegierungen untersucht. Ziel ist es, Bauteile zu gestalten, die gegenüber monolithischen Bauteilen gleicher Geometrie verbesserte Eigenschaften aufweisen. Um dies zu erreichen, werden vor einem Umformvorgang mehrere Werkstoffe gefügt. In dieser Arbeit werden Hybridwellen, die entweder durch Plasma- (PTA) oder Laser-Metallauftragschweißen (LMD-W) erzeugt werden, durch Querkeilwalzen (QKW) geformt, um die resultierende Dicke des im Bereich des Lagersitzes aufgetragenen Materials zu untersuchen. Zusätzlich werden Finite-Elemente-Analyse Simulationen des QKW-Verfahrens mit experimentellen QKW-Ergebnissen verglichen, um die Schichtdickenabschätzung durch Simulation zu validieren. Dies ermöglicht eine genauere Vorhersage der Schichtwerkstoffgeometrie nach dem QKW-Verfahren, und die gewünschte Schweißnahtgeometrie kann durch Berechnung der Schichtdicken mittels QKW-Simulation ausgewählt werden.
Querkeilwalzen, Umformtechnik, Hybrid, Halbzeuge, Tailored Forming