Inkrementelle Umformung hybrider Halbzeuge mittels Querkeilwalzen

Thema Umformtechnik, Prozessüberwachung
Projekttitel Inkrementelle Umformung hybrider Halbzeuge mittels Querkeilwalzen (SFB 1153 – Teilprojekt B1 – Querkeilwalzen)
Laufzeit 01.07.2015 – 30.06.2027
Video
Projektwebseite www.sfb1153.uni-hannover.de
Ergebnisse
Download
Podcast

Das übergeordnete Ziel des Sonderforschungsbereichs 1153 „Tailored Forming“ ist es, die Potenziale für hybride Massivbauteile auf der Basis eines neu zugeschnittenen Fertigungsprozesses unter Verwendung von gefügten Halbzeugen zu erschließen. Im Gegensatz zu bestehenden Herstellungs- und Fertigungsprozessen von hybriden Massivbauteilen, bei denen der Fügeprozess erst während der Umformung oder am Ende der Fertigungskette erfolgt, werden im SFB maßgeschneiderte Halbzeuge verwendet, welche vor dem Formgebungsprozess gefügt werden. Gegenüber den bestehenden Fertigungsverfahren erleichtert die einfache Geometrie der Halbzeuge die Handhabung sowie die prozesssichere Herstellung einer stoffschlüssigen Fügezone.

Das Ziel des Teilprojektes B1 ist die Ermittlung der Umformbarkeit neuartiger hybrider Halbzeuge mittels des inkrementell umformenden Querkeilwalzens. Hauptaspekt ist die Umformung verschieden hergestellter Hybridhalbzeuge aus Stahl und Aluminium.

Eine Herausforderung ist die Erwärmung der Halbzeuge, da das Hybridhalbzeug aufgrund der verschiedenen Werkstoffe unterschiedliche Fließwiderstände besitzt und ggf. ungleichmäßig erwärmt werden muss. Hierfür wird eine induktive Erwärmungsanlage am IPH verwendet. Die Walzprozesse werden mittels FEM-Simulation ausgelegt und experimentell untersucht. Die Ergebnisse des Walzprozesses werden ausgewertet und eine Auslegungsmethode entwickelt sowie die Prozesse zielgerichtet hinsichtlich Stabilität und Qualität verbessert.

Forschungsschwerpunkte sind hierbei die Untersuchung der Qualität der Fügezone und des Einflusses des Fügeverfahrens auf die Fügezone sowie auf die Stabilität des Umformprozesses. Darüber hinaus wird der Einfluss der unterschiedlichen Fließwiderstände der Werkstoffe und damit verbunden die geeignete Bauteiltemperatur für eine kontrollierte Umformung untersucht. Denn aufgrund der unterschiedlichen Materialien und den damit verbundenen, oft unterschiedlichen Fließspannungen, ist das Umformverhalten von Hybridbauteilen ohne weitere Untersuchungen nicht gesteuert durchführbar.

Mit den Ergebnissen dieses Teilprojektes soll eine Auslegung von Querkeilwalzprozessen für Hybridbauteilen ermöglicht werden. Ebenso gehört die Ermittlung der Umformbarkeit der durch andere Teilprojekte hergestellten hybriden Halbzeuge zu den Zielsetzungen.

  • Keine aktuellen Termine vorhanden.
  • 07.11.2016
  • PZH – Produktionstechnisches Zentrum Hannover, An der Universität 2, 30823 Garbsen
  • 27.06.2016
  • PZH – Produktionstechnisches Zentrum Hannover, An der Universität 2, 30823 Garbsen
  • 25.04.2016
  • PZH – Produktionstechnisches Zentrum Hannover, An der Universität 2, 30823 Garbsen
  • 01.02.2016
  • PZH – Produktionstechnisches Zentrum Hannover, An der Universität 2, 30823 Garbsen
  • 26.11.2015
  • PZH – Produktionstechnisches Zentrum Hannover, An der Universität 2, 30823 Garbsen
  • 23.07.2015
  • PZH – Produktionstechnisches Zentrum Hannover, An der Universität 2, 30823 Garbsen

Veröffentlichungen zum Projekt

Hybridbauteile, die aus mehreren Werkstoffen bestehen, können die steigenden Anforderungen an Leichtbau und Funktionsintegration in der Automobil- und Flugzeugindustrie erfüllen. Hybride Halbzeuge werden hergestellt, indem auf einen niedrig legierten Grundwerkstoff eine hochlegierte Schicht aufgebracht wird, bevor das Werkstück warm umgeformt und bearbeitet wird. Während dieser Prozesskette können Werkstückabweichungen in Form von Materialverteilung und Werkstoffeigenschaften auftreten, die die Lebensdauer des Bauteils beeinflussen. In dieser Arbeit wird untersucht, ob solche Werkstückabweichungen innerhalb der Prozesskette durch die Analyse von Prozesssignalen aus nachfolgenden Prozessschritten erkannt werden können. Zu diesem Zweck wurden Hybrid-Halbzeuge aus C22.8/X45CrSi9-3 mit künstlichen Werkstückabweichungen versehen. Anschließend wurden die Prozesssignale während der Umformung und der Bearbeitung auf ihre Empfindlichkeit gegenüber den künstlichen Abweichungen hin analysiert. Die Ergebnisse zeigten, dass Abweichungen in der Beschichtungsgröße mit Hilfe von Signalen sowohl aus der Umformung als auch aus der Zerspanung effektiv überwacht werden können. Abweichungen in der Position der Beschichtung können nur während der Bearbeitung erkannt werden, während die Signale der Umformung besser auf die eingeführten Härteabweichungen von ca. 100 HV0,1 reagieren.

Laser-Heißdraht-Auftragschweißen, Querkeilwalzen, Zerspanung, Überwachung, Werkstückabweichungen

Der Sonderforschungsbereich 1153 erforscht eine neuartige Prozesskette zur Herstellung von Hochleistungs-Hybridbauteilen. Die Kombination von Aluminium und Stahl kann das Gewicht von Bauteilen reduzieren und zu einem geringeren Kraftstoffverbrauch führen. Beim Schweißen von Aluminium und Stahl bildet sich eine spröde intermetallische Phase, die die Lebensdauer des Bauteils verringert. Nach dem Schweißen wird das Werkstück inhomogen erwärmt und in einem Querkeilwalzverfahren warm umgeformt. Da die intermetallische Phase während der Warmumformung temperaturabhängig wächst, ist die Temperaturführung von großer Bedeutung. In dieser Arbeit wird die Möglichkeit der prozessintegrierten Kontakttemperaturmessung mit Dünnschichtsensoren untersucht. Dazu wird die Anfangstemperaturverteilung nach der induktiven Erwärmung des Werkstücks bestimmt. Anschließend wird ein Querkeilwalzen durchgeführt und die Daten der Dünnschichtsensoren mit den Temperaturmessungen nach der Erwärmung verglichen. Es zeigt sich, dass in das Werkzeug eingebrachte Dünnschichtsensoren in der Lage sind, Oberflächentemperaturen bereits bei einer Kontaktzeit von 0,041 s zu messen. Die neue Prozessüberwachung der Temperatur ermöglicht es, ein besseres Prozessverständnis zu entwickeln sowie die Temperaturverteilung weiter zu optimieren. Langfristig lassen sich aus der Kenntnis der Temperaturen in den verschiedenen Werkstoffen auch Qualitätsmerkmale sowie Erkenntnisse über die Ursachen möglicher Prozessfehler (z.B. Bruch der Fügezone) ableiten.

Querkeilwalzen, Dünnschichtsensoren, Hybridbauteile, Aluminium, Temperaturüberwachung

Der Sonderforschungsbereich 1153 erforscht eine innovative Prozesskette zur Herstellung von Hybridbauteilen. Die hybriden Werkstücke werden zunächst gefügt und anschließend durch Querkeilwalzen umgeformt. Um das Verhalten der Fügezone bei erhöhter Komplexität des Umformprozesses zu untersuchen, wurden Ritzelwellen hergestellt. Zu diesem Zweck wurden sechs Arten von Werkstücken, die mit drei Arten von Fügeverfahren hergestellt wurden, zu Ritzelwellen umgeformt. Das Referenzverfahren liefert eine Welle mit einem glatten Lagersitz. Es wurde festgestellt, dass die erhöhte Komplexität im Vergleich zu den Referenzprozessen keine Herausforderungen darstellte. Bei den Ritzeln aus Stahl wurde eine nahezu endkonturnahe Geometrie erreicht.

Hybridbauteile, Querkeilwalzen, Warmumformung, Laserstrahlschweißen, LHWD-Schweißen

Es wird eine neue Prozesskette für die Herstellung von lastangepassten Hybridbauteilen vorgestellt. Die Prozesskette "Tailored Forming" besteht aus einem Auftragschweißprozess, der Warmumformung, der spanenden Bearbeitung und einer optionalen Wärmebehandlung. Im Mittelpunkt dieser Arbeit steht die Kombination des Laserstrahl-Warmdraht-Auftragschweißens mit anschließender Warmumformung zur Herstellung von Hybridbauteilen. Die Anwendbarkeit wird für verschiedene Werkstoffkombinationen und Bauteilgeometrien, z. B. eine Welle mit Lagersitz oder ein Kegelrad, untersucht. Als Plattierungswerkstoffe werden der austenitische Edelstahl AISI 316L und der martensitische Ventilstahl AISI HNV3 verwendet, als Grundwerkstoffe werden Baustahl AISI 1022M und Einsatzstahl AISI 5120 eingesetzt. Die resultierenden Bauteileigenschaften nach dem Laserwarmdraht-Auftragschweißen und der Warmumformung wie Härte, Gefüge und Eigenspannungszustand werden vorgestellt. Die Warmumformung bewirkt im Auftragschweißen und in der Wärmeeinflusszone eine Umwandlung von einem Schweißgefüge in ein feinkörniges Umformgefüge. Die Warmumformung beeinflusst den Eigenspannungszustand in der Umhüllung erheblich, wobei der resultierende Eigenspannungszustand von der Werkstoffkombination abhängt.

Laser-Heißdraht-Auftragschweißen, Auftragschweißen, Warmumformung, Eigenspannung, Tailored Forming

Tailored Forming dient der Herstellung von Hybridbauteilen, bei denen die verwendeten Werkstoffe lokal an die unterschiedlichen physikalischen, chemischen und tribologischen Anforderungen angepasst werden. In dieser Arbeit wird eine Tailored-Forming-Prozesskette für die Herstellung einer Hybridwelle mit Lagersitz untersucht. Die Prozesskette besteht aus den Fertigungsschritten Laserwarmdraht-Auftragschweißen, Querkantenwalzen, Drehen und Festwalzen. Als Grundwerkstoff wird ein zylindrischer Stab aus Baustahl C22.8 verwendet und im Bereich des Lagersitzes eine Plattierung aus dem martensitischen Ventilstahl X45CrSi9-3 aufgebracht, um die erforderliche Festigkeit und Härte zu erreichen. Es wird untersucht, wie sich die Oberflächen- und Untergrundeigenschaften des Hybridbauteils, wie Härte, Gefüge und Eigenspannungszustand, innerhalb der Prozesskette verändern. Die Ergebnisse werden mit einer früheren Studie verglichen, in der der austenitische rostfreie Stahl X2CrNiMo19-12 als Plattierungswerkstoff untersucht wurde. Es zeigt sich, dass der Eigenspannungszustand nach der Warmumformung von den Wärmeausdehnungskoeffizienten des Plattierungswerkstoffs abhängt.

Tailored Forming, Eigenspannung, Laserheißdrahtplattieren, Festwalzen, Hybridbauteile

Die Prozesskette Tailored Forming dient der Herstellung hybrider Bauteile und besteht aus einem Fügeprozess für verschiedene Werkstoffe (z. B. Auftragschweißen), anschließender Warmumformung, spanender Bearbeitung und Wärmebehandlung. Auf diese Weise können Bauteile mit an den Lastfall angepassten Werkstoffen hergestellt werden. In dieser Arbeit werden Hybridwellen durch Auftragschweißen einer Beschichtung aus X45CrSi9-3 auf ein Werkstück aus 20MnCr5 hergestellt. Die Hybridwellen werden dann durch Querkeilwalzen umgeformt. Es wird untersucht, wie sich die Dicke der Schicht und die Art der Abkühlung nach der Warmumformung (an Luft oder in Wasser) auf die Eigenschaften der Schicht auswirken. Die Hybridwellen werden ohne Schichtablösung umgeformt. Allerdings kommt es im Bereich des Lagersitzes durch den Mannesmann-Effekt zu leichten Kernauflockerungen. Die Mikrohärte der Auftragschicht wird durch die Kühlstrategie nur geringfügig beeinflusst, während die Mikrohärte des Grundmaterials bei wassergekühlten Wellen deutlich höher ist. Das Gefüge der Plattierung besteht nach beiden Abkühlstrategien hauptsächlich aus Martensit. Im Grundwerkstoff führt die Luftkühlung zu einem überwiegend ferritischen Gefüge mit Ferrit-Perlit-Körnern. Abschrecken in Wasser führt zu einem Gefüge, das hauptsächlich aus Martensit besteht.

Laser-Heißdraht-Auftragschweißen, Querkeilwalzen, Hybridbauteile, Auftragschweißen

Aufgrund der zunehmenden Integration von Funktionen müssen viele Bauteile hohe und manchmal widersprüchliche Anforderungen erfüllen. Eine Möglichkeit, dieses Problem zu lösen, ist Tailored Forming. Dabei werden hybride Halbzeuge durch einen Füge- oder Beschichtungsprozess hergestellt, die anschließend warm umgeformt und nachzerspant werden. Für die Auslegung von hybriden Bauteilen für eine mögliche spätere industrielle Anwendung sind Kenntnisse über die Eigenschaften von hybriden Bauteilen erforderlich. In dieser Arbeit wird untersucht, wie die jeweiligen Prozessschritte der Tailored-Forming-Prozesskette die Eigenschaften der aufgebrachten Beschichtung verändern. Dazu werden Wellen aus unlegiertem Stahl durch Laserheißdraht-Auftragschweißen mit einem hochlegierten austenitischen Stahl X2CrNiMo19-12 beschichtet. Anschließend erfolgt die Warmumformung durch Querkeilwalzen und die Endbearbeitung durch Drehen und Festwalzen. Nach jedem Prozessschritt werden die Oberflächeneigenschaften der Auftragschicht wie Gefüge, Härte und Eigenspannungszustand untersucht. So kann der Einfluss der verschiedenen Prozessschritte auf die Oberflächeneigenschaften in der Prozesskette der Herstellung von Hybridwellen analysiert werden. Dieses Wissen ist notwendig, um definierte Eigenschaften für ein gewünschtes Einsatzverhalten gezielt einzustellen.

 

Querkeilwalzen, Tailored Forming, Hybrid

Die Produktion von Hybridbauteilen beinhaltet eine lange Prozesskette, die bereits vor der Bearbeitung zu hohen Investitionskosten führt. Um die Prozesssicherheit und Prozessqualität bei der Endbearbeitung zu erhöhen, ist es notwendig, Informationen über die Halbzeuggeometrie für den Bearbeitungsprozess bereitzustellen und fehlerhafte Bauteile frühzeitig zu identifizieren. In diesem Beitrag wird eine Untersuchung zur Vorhersage von Maßabweichungen und Lunkern im Material während des Querkeilwalzens von Wellen auf Basis des gemessenen Werkzeugkraft vorgestellt. Zunächst wird der Prozess in Bezug auf die Variation des Durchmessers für drei Walzspalte und zwei Materialien untersucht. Anschließend werden aus den hydraulischen Drücken der Werkzeuge Merkmale generiert und multi-lineare Regressionsmodelle entwickelt, um die resultierenden Durchmesser der Wellenschulter zu bestimmen. Diese Modelle zeigen eine bessere Vorhersagegenauigkeit als Modelle, die auf Metadaten über den eingestellten Walzenspalt und das geformte Material basieren. Die Merkmale werden zusätzlich genutzt, um den Prozess hinsichtlich des Mannesmann-Effekts erfolgreich zu überwachen. Abschließend wird ein Sensorkonzept für eine neue Querkeilwalzmaschine zur Verbesserung der Vorhersage der Werkstückgeometrie und ein neuer Ansatz zur Überwachung von Bearbeitungsprozessen von Werkstücken mit Maßabweichungen für kommende Studien vorgestellt.

Querkeilwalzen, Umformtechnik, Hybrid, Halbzeuge, Tailored Forming

Die Lebensdauer von Wälzkontakten ist von vielen Faktoren abhängig. Innerhalb einer beispielhaften Prozesskette zur Herstellung von hybriden Hochleistungsbauteilen durch Tailored Forming werden hybride Massivbauteile aus mindestens zwei verschiedenen Stahllegierungen untersucht. Ziel ist es, Bauteile zu gestalten, die gegenüber monolithischen Bauteilen gleicher Geometrie verbesserte Eigenschaften aufweisen. Um dies zu erreichen, werden vor einem Umformvorgang mehrere Werkstoffe gefügt. In dieser Arbeit werden Hybridwellen, die entweder durch Plasma- (PTA) oder Laser-Metallauftragschweißen (LMD-W) erzeugt werden, durch Querkeilwalzen (QKW) geformt, um die resultierende Dicke des im Bereich des Lagersitzes aufgetragenen Materials zu untersuchen. Zusätzlich werden Finite-Elemente-Analyse Simulationen des QKW-Verfahrens mit experimentellen QKW-Ergebnissen verglichen, um die Schichtdickenabschätzung durch Simulation zu validieren. Dies ermöglicht eine genauere Vorhersage der Schichtwerkstoffgeometrie nach dem QKW-Verfahren, und die gewünschte Schweißnahtgeometrie kann durch Berechnung der Schichtdicken mittels QKW-Simulation ausgewählt werden.

 

Querkeilwalzen, Umformtechnik, Hybrid, Halbzeuge, Tailored Forming

Zur Herstellung hybrider Bauteile mit maßgeschneiderten Eigenschaften wurde eine durch Finite-Elemente-Simulation unterstützte Prozesskettengestaltung untersucht. Diese umfasst die Prozessschritte Querkeilwalzen, Heißgeometrieprüfung, Induktionshärtung und Ermüdungsprüfung. Die Prozesskette ermöglicht den Einsatz von Werkstoffkombinationen wie hochfeste Stähle mit kostengünstigen und leicht zu verarbeitenden Stählen. Hier wird das Plasma-Pulver-Auftragschweißen eingesetzt, um die Prozesskette mit hybriden Halbzeugen aus verschiedenen Stahlgüten zu versorgen. Es wird ein Überblick über die numerischen Ansätze zur Berücksichtigung der verschiedenen physikalischen Phänomene in jedem der Prozessschritte gegeben. Die Eigenschaften des Bauteilverhaltens wurden mit der Finite-Elemente-Methode (FEM) und theoretischen Ansätzen untersucht.

 

Querkeilwalzen, Umformtechnik, Hybrid, Halbzeuge, Tailored Forming

In dieser Arbeit stellen wir eine Anwendung der virtuellen Elementmethode (VEM) auf einen Umformprozess von metallischen Hybridstrukturen durch Querkeilwalzen vor. Die Modellierung dieses Prozesses ist in ein thermomechanisches Gerüst eingebettet, das großen Verformungen ausgesetzt ist. Da Umformprozesse meist große Verschiebungen innerhalb eines plastischen Regimes beinhalten, ergibt sich die Schwierigkeit einer genauen numerischen Behandlung. Die VEM zeigt eine stabile, robuste und quadratische Konvergenzrate unter extremen Belastungsbedingungen in vielen Bereichen der numerischen Mechanik. Numerisch wird der Umformprozess durch die Zuweisung zeitabhängiger Randbedingungen erreicht, anstatt die Kontaktmechanik zu modellieren, was zu einer vereinfachten Formulierung führt. Basierend auf den beiden metallischen Kombinationen von Stahl und Aluminium werden in den Simulationen unterschiedliche Materialeigenschaften berücksichtigt. Der Zweck dieses Beitrags besteht darin, die Wirksamkeit eines solchen berührungslosen makroskopischen Rahmens durch die Verwendung geeigneter Randbedingungen innerhalb eines virtuellen Elementschemas zu veranschaulichen. Ein Vergleich mit der klassischen Finite-Elemente-Methode (FEM) wird durchgeführt, um die Effizienz des gewählten Ansatzes zu demonstrieren. Die in dieser Arbeit vorgeschlagenen numerischen Beispiele stammen aus dem DFG-Sonderforschungsbereich (SFB) 1153 "Prozesskette zur Herstellung hybrider Hochleistungsbauteile durch Tailored Forming".

Simulation, FEM, Umformtechnik, Tailiored Forming

Das Ziel des Teilprojektes B1 des Sonderforschungsbereiches (SFB) 1153 ist die Ermittlung der Umformbarkeit neuartiger hybrider Halbzeuge mittels des inkrementell umformenden Querkeilwalzens. Hauptaspekt ist die Umformung verschieden hergestellter Hybridhalbzeuge aus Stahl, Aluminium und Hartwerkstofflegierungen. Zur Reduktion des Bauteilgewichts ist es durch die Verwendung hybrider Halbzeuge möglich, weniger belastete Segmente eines zuvor monolithischen Bauteils aus einem Leichtmetall zu fertigen. Zur Erhöhung des Verschleißwiderstandes kann ein Bauteilbereich (z. B. ein Lagersitz) mit einem Hartwerkstoff ummantelt werden. Darüber hinaus sollen zukünftig Prozessgrößen (z. B. Temperatur und Kraft) im Werkzeug-Werkstück-Kontakt gemessen werden. Für die verwendeten Halbzeuge gibt es primär zwei Werkstoffanordnungen: ummantelt (koaxial - Demonstrator Welle 1) und stirnseitig gefügt (seriell - Demonstrator Welle 3). Eine Herausforderung ist die für die Umformung notwendige Erwärmung der Halbzeuge, da das Hybridhalbzeug aufgrund der verschiedenen Werkstoffe unterschiedliche Fließwiderstände besitzt und ggf. inhomogen erwärmt werden muss, um eine gleichmäßige Umformung zu ermöglichen.

Umformtechnik, Querkeilwalzen, Hybride Halbzeuge, Tailored Forming

Der Sonderforschungsbereich 1153 „Tailored Forming“ am Institut für Integrierte Produktion Hannover erschließt weiteres Potenzial hybrider Massivbauteile. Auf Basis eines neuartigen Fertigungsablaufs sollen maßgeschneiderte, bereits vor der Formgebung gefügte Halbzeuge eingesetzt werden.

Tailored Forming, Querkeilwalzen, Umformtechnik, Aluminium, Stahl

Der Sonderforschungsbereich 1153 (SFB1153) "Prozesskette zur Herstellung hybrider Hochleistungsbauteile durch maßgeschneidertes Umformen" hat zum Ziel, neue Prozessketten für die Herstellung hybrider Massenbauteile aus gefügten Halbzeugen zu entwickeln. Das Teilprojekt B1 untersucht die Umformbarkeit von Hybridbauteilen mittels Querkeilwalzen. Diese Studie untersucht die Reduzierung der Schichtdicke von koaxial angeordneten Hybridhalbzeugen während eines Querkeilwalzprozesses. Die untersuchten Teile werden aus zwei Stählen (1.0460 und 1.4718) mittels Laserauftragschweißen hergestellt. Der Walzprozess wird mittels Finite Elemente (FE)-Simulationen ausgelegt und später experimentell untersucht. Forschungsschwerpunkte sind Untersuchungen zum Unterschied in der Schichtdicke des laserauftraggeschweißten 1.4718 vor und nach dem Querkeilwalzen in Abhängigkeit vom Keilwinkel, der Querschnittsflächenreduzierung und der Umformgeschwindigkeit. Außerdem werden die Simulationen und die experimentellen Versuche verglichen, um die Möglichkeit der Vorhersage der Dicke mittels Finite-Elemente-Analyse (FEA) zu überprüfen. Hauptergebnis war die Möglichkeit, das Umformverhalten von koaxial angeordneten Hybridbauteilen bei einer Querschnittsflächenreduzierung von 20% mittels FEA zu beschreiben. Bei einer Querschnittsreduzierung von 70% zeigten die Ergebnisse eine größere Abweichung zwischen Simulation und experimentellen Versuchen. Die Abweichungen lagen zwischen 0,8% und 26,2%.

Querkeilwalzen, Hybridschmieden, FEM, Schichtdicke

Im Rahmen des Sonderforschungsbereiches 1153 "Tailored Forming" der Deutschen Forschungsgemeinschaft werden im Teilprojekt B1 am IPH Untersuchungen zum Querkeilwalzen an hybriden Halbzeugen durchgeführt. Diese Veröffentlichung diskutiert die Ergebnisse der Untersuchungen hinsichtlich der Fügezone hybrider Halbzeuge und deren umformtechnisches Verhalten während des Querkeilwalzens. Die Form, Lage und Verschiebung der Fügezone hybrider Halbzeuge aus Aluminium und Stahl wird hierbei abhängig von verschiedenen Walzparametern wie Temperatur, Geschwindigkeit und Werkzeuggeometrie betrachtet. Die Untersuchungen wurden sowohl simulativ als auch experimentell durchgeführt. 

Tailored Forming, Querkeilwalzen, Umformtechnik, Aluminium, Stahl

Im Rahmen des Sonderforschungsbereiches 1153 "Tailored Forming" der Deutschen Forschungsgemeinschaft werden im Teilprojekt B1 am IPH Untersuchungen zum Querkeilwalzen an hybriden Halbzeugen durchgeführt. Diese Veröffentlichung diskutiert die Möglichkeiten der Umformung von Hartwerkstoffen wie 100Cr6, Stellite und Delcrome im Rahmen des Tailored Formings. Hierfür wurden von Teilprojekt A4 hybride Halbzeuge aus C22.8 und den verschiedenen Hartwerkstoffen mittels Auftragschweißen hergestellt und anschließend vom Teilprojekt B1 mittels Querkeilwalzen umgeformt. Es zeigt sich, dass die Umformung hybrider Hartwerkstoffhalbzeuge mittels Querkeilwalzen möglich ist und gute Ergebnisse liefert.

Tailored Forming, Querkeilwalzen, Hartwerkstoffe, PPA

Im Rahmen des Sonderforschungsbereiches 1153 "Tailored Forming" der Deutschen Forschungsgemeinschaft werden im Teilprojekt B1 am IPH Untersuchungen zum Querkeilwalzen an hybriden Halbzeugen durchgeführt. Diese Veröffentlichung diskutiert die Ergebnisse der Untersuchungen hinsichtlich der Temperatur- und Geometriemessung von schmiedewarmen Halbzeugen und Bauteilen mittels optischer Messtechnik. Hierfür hat das Teilprojekt C5 des Instituts für Mess- und Regelungstechnik der Leibniz Universität Hannover eine geeignete Messtechnik entwickelt und hinsichtlich der Anforderungen an Tailored Forming Bauteile angepasst, um auch verschiedene Werkstoffpaarungen messen zu können. Die Ergebnisse der Simulation werden mit den Ergebnissen der Umformversuche, ermittelt durch das in dieser Arbeit beschriebene Messverfahren, verglichen. Das Ziel ist es, am Beispiel des Querkeilwalzprozesses, Erwärmungsstrategien und Prozessparameter zu verbessern, um stabile Fertigungsschritte für Tailored Forming Bauteile zu ermöglichen.

Tailored Forming, Querkeilwalzen, Umformtechnik, Aluminium, Stahl, Optische Messtechnik

In dieser Veröffentlichung wird der Herstellungsprozess und die anschliessende Umnformung von seriellen hybriden Stahlteilen beschrieben. Die Halbzeuge wurden mittels Laserschweißen hergestellt und mittels Querkeilwalzen umgeformt. Die präsentierten Ergebnisse sind nur ein erster Ansatz, um Einblicke in das Umformverhalten von lasergeschweißten und quekeilgewalzten Teilen zu erhalten. Die untersuchte Materialkombination ist C22 (1.0402) und 20MnCr5 (1.7147). Die neue Prozesskette ermöglicht die Herstellung von hybriden Bauteilen. Zut Bewertung der entwickelten Prozesskette werden Schweißnaht und Fügezone vor und nach dem Querkeilwalzen analysiert. Es konnte gezeigt werden, dass der Fügeprozess mittels Laserschweißen eine starke Verbindung zwischen den beiden Werkstoffen mit einer höheren Härte in der Fügezone als für die einzelnen Materialien ermöglicht. Nach dem Umformprozess ist die Verbindung in der Fügezone noch vorhanden. Die Härte der Fügezone nimmt ab, bleibt aber höher als für die einzelnen Werkstoffe selbst.

Tailored Forming, Laserstrahlschweißen, Hybride Bauteile, Querkeilwalzen

In dieser Veröffentlichung werden Untersuchungen über die Verschiebung der Fügezone von seriell angeordneten hybriden Halbzeugen beim Querkeilwalzen vorgestellt. Die untersuchten Werkstoffkombinationen sind Stahl-Stahl (C22 und 41Cr4) und Stahl-Aluminium (20MnCr5 und AlSi1MgMn). Der Querkeilwalzprozess wurde mittels FEM-Simulationen ausgelegt und anschließend experimentell untersucht. Untersuchungsschwerpunkt ist die Untersuchung der Verschiebung der Fügezone in Abhängigkeit der Hauptparameter des Querkeilwalzens. Es konnte gezeigt werden, dass das Umformverhalten seriellen hybriden Halbzeugen aus Stahl-Stahl und Stahl-Aluminium mit der FEM beschrieben werden kann. Die Abweichung der Verschiebung gemäß Simulation im Vergleich zu den experimentellen Versuchen beträgt nur etwa 3 %, was eine gute Näherung ist.

Querkeilwalzen, Hybride Bauteile, Fügezone, Stahl, Aluminium

Die meisten heutigen technischen Bauteile und Komponenten bestehen aus monolithischen Materialien. Diese in etablierten Herstellungsprozessen hergestellten Monomaterialkomponenten erreichen aufgrund ihrer jeweiligen Materialeigenschaften ihre Grenzen. Daher kann eine signifikante Steigerung der Produktionsqualität und Effektivität nur durch die Kombination verschiedener Materialien in einem Bauteil erreicht werden. Die Umformung von zuvor gefügten Halbzeugen zu entkonturnahen Bauteilen, die aus zwei verschiedenen Materialien bestehen, ist eine vielversprechende Methode zur Produktion von Bauteilen mit lokal optimierten Eigenschaften. Diese neue Prozesskette bietet gegenüber herkömmlichen Fertigungstechnologien eine Reihe von Vorteilen. Beispiele sind die Herstellung von besonders angepassten Schmiedeteilen mit hoher Materialausnutzung, eine Verbesserung der Fügezone durch den folgenden Umformprozess und ein einfach zu integrierendes Fügeverfahren aufgrund der einfachen Geometrie der Halbzeuge.

Diese Veröffentlichung beschreibt den Herstellungsprozess von hybriden Stahlbauteilen, die durch die Kombination eines Plasma-Pulver-Auftraggeschweißen mit anschließendem Querkeilwalzen hergestellt wurden. Diese innovative Prozesskette ermöglicht die Produktion von hybriden Bauteilen. Um die Prozesskette zu bewerten, wird die Schichtdicke der aufgetragenen Schicht vor und nach dem Querkeilwalzen untersucht. Es konnte gezeigt werden, dass der Umformprozess zu einer Verbesserung der aufgetragenen Schicht, also einer homogeneren Verteilung entlang der Hauptachse, führt.

Prozesskette, Plasma-Pulver-Auftragschweißen, Hybride Bauteile, Querkeilwalzen

Das Querkeilwalzen hybrider Bauteile ergibt je nach Anordnung (seriell oder koaxial) unterschiedliche Herausforderungen, die zunächst grundlegend untersucht werden.

Beim Querkeilwalzen von seriellen Bauteilen ist die kontrollierte Umformung der Fügezone die größte Herausforderung. Abhängig von der Fließspannung der verwendeten Werkstoffe verformen sich die Bauteilhälften unterschiedlich. Um diese Umformung kontrolliert ablaufen zu lassen, wurde zunächst das Umformverhalten hinsichtlich der Verschiebung und Qualität der Fügezone analysiert und anschließend Möglichkeiten ermittelt, mit denen die Umformung gezielt erfolgen kann. Dazu wurden systematisch nach dem DoE-Verfahren die Einflussparameter (Werkstücktemperatur, Umformgeschwindigkeit, Querschnittsflächenreduktion, Schulter- und Keilwinkel) zunächst mittels Finite-Element-Methode ermittelt und anschließend die Untersuchungen experimentell verifiziert. Eine Einflussnahme auf die Umformung anhand sowohl konstruktiver Maßnahmen (z. B. ungleiche Werkzeughälften) als auch durch prozessbedingte Parameter (z. B. unterschiedliche Temperierung) wird untersucht.

Das Querkeilwalzen von koaxialen Bauteilen hat aufgrund des Bauteilaufbaus andere Herausforderungen. Ziel ist es, bei der Umformung den Verlauf der Dicke der aufgetragenen Schicht gezielt beeinflussen zu können. Dazu wurden zu Beginn Finite-Elemente-Simulationen durchgeführt, um beeinflussende Parameter zu ermitteln. Durch eine systematische Untersuchung der Versuchsparameter nach dem DoE-Verfahren ergaben die Schichtdicke vor der Umformung sowie die Querschnittsflächenreduktion als Parameter mit den größten Einflüssen auf die den Verlauf der Schichtdicke nach der Umformung. Die erzielten Ergebnisse wurden in experimentellen Versuchen anschließend verifiziert.

Querkeilwalzen, Stahl, Aluminium, Fügezone, Schichtdicke

In den vergangenen Jahren sind die Anforderungen an technische Bauteile stetig gestiegen. Diese Entwicklung ist dem Wunsch nach immer leistungsfähigeren Produkten geschuldet, die neben einem geringeren Gewicht, einer kleineren Bauweise und erweiterter Funktionalität zudem eine höhere Widerstandsfähigkeit gegenüber bestimmten Beanspruchungsarten aufweisen.

Das übergeordnete Ziel des Sonderforschungsbereichs 1153 "Tailored Forming" ist es, die Potentiale für hybride Massivbauteile auf der Basis eines neuen zugeschnittenen Fertigungsprozesses unter Verwendung von gefügten Halbzeugen  zu erschließen.

In diesem Beitrag werden die Vorgehensweise und erste Ergebnisse ausgewählter Teilprojekte zur Halbzeugherstellung durch Verbundstrangpressen, zur Umformung der hybriden Halbzeuge durch Querkeilwalzen, Gesenkschmieden und Fließpressen und zur numerischen Versagensvorhersage der Fügezonen dargestellt. Hierdurch wird ein Überblick über mögliche Leichtbaustrategien im Bereich der Massivumformung durch die Verwendung bereits gefügter Halbzeuge gegeben.

Tailored Forming, Halbzeugherstellung, Umformung, Querkeilwalzen

Bauteile effizient umformen, ohne dass Grat entsteht: Dazu eignet sich das Querkeilwalzen. Für hybride Halbzeuge muss es völlig neu erforscht werden: Mit welchen Einstellungen lassen sich Materialkombinationen – beispielsweise aus Stahl und Aluminium – gemeinsam umformen?

Querkeilwalzen, hybride Halbzeuge

Heute bestehen die meisten technischen Bauteile und Komponenten aus monolithischen Werkstoffen. Dennoch erreichen die bisher verwendeten monolithischen Werkstoffe ihre technologischen und konstruktiven Grenzen, so dass eine Verbesserung der Bauteileigenschaften durch Hybridteile realisiert werden könnte. Schmieden der zuvor gefügten Halbzeuge zu präzisen Hybridteilen ist eine vielversprechende Methode, um funktionell angepasste Bauteile in wenigen Prozessschritten herzustellen. Diese neue Prozesskette bietet eine Reihe von Vorteilen im Vergleich zu anderen Herstellungstechnologien. Beispiele sind die Herstellung von spezifischen belastungsangepassten Schmiedeteilen mit einer hohen Materialausnutzung, die eine Verbesserung der Fügezone durch die nachfolgende Umformung erbringt und einfach zu implementierende Fügeverfahren aufgrund der simplen Geometrien der Halbzeuge. Dieser Artikel beschreibt die Herstellungsverfahren für Hybridstahlteile, die durch eine Kombination eines Auftragschweißprozesses mit anschließender Warmumformung (Stauchen) oder Querkeilwalzen hergestellt werden. Es konnte gezeigt werden, dass die innovative Prozesskette die Herstellung von Hybridbauteilen ermöglicht, wobei die Umformung zu einer Verbesserung der mechanischen Eigenschaften des laserauftraggeschweißten Materials führt.

Prozesskette, Auftragschweißen, Warmmassivumformen, Querkeilwalzen

Förderer

Das Projekt mit dem Förderkennzeichen 252662854 wird mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Partner

Ansprechperson